cho tam giác ABC, MN song song với BC,K là trung điểm MN, I là giao điem AK và BC. cm BI=CI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔIAK và ΔIMC có
góc IAK=góc IMC
góc AIK=góc MIC
=>ΔIAK đồng dạng với ΔIMC
=>AK/MC=AI/IM=2
=>AK=2MC=BC
a: Xét ΔBAD và ΔBKD co
BA=BK
góc ABD=góc KBD
BD chung
=>ΔBAD=ΔBKD
=>DA=DK và góc BAD=góc BKD=90 độ
=>DK vuông góc BC
b: DA=DK
mà DK<DC
nên DA<DC
c: BA=BK
DA=DK
=>BD là trung trực của AK
Hình bạn tự vẽ
a, Nối M với N
Xét △BMN có:
BM=BN(gt)
=>△BMN cân tại B
=>∠BMN=(1800 - ∠B) / 2 (1)
Mà ∠BAC=(1800 - ∠B) / 2 (△ABC cân tại B) (2)
Từ (1) và (2) => ∠BMN=∠BAC (3)
Mà ∠BMN đồng vị ∠BAC (4)
Từ (3) và (4) => MN//AC
b, Xét △CMB và △ANB có
\(\left\{{}\begin{matrix}\text{AB = AC (△ABC cân tại B)}\\\text{∠ABC chung}\\\text{BM=BN}\left(gt\right)\end{matrix}\right.\)
=>△CMB = △ANB (c.g.c)
=> ∠BMC = ∠BNC
=>∠BMN + ∠CMN = ∠BNM + ∠MNA
Mà ∠BMN = ∠BNM (△BMN cân tại B)
=>∠BMN + ∠CMN = ∠BMN + ∠MNA
=> ∠CMN = ∠MNA
=> △IMN cân tại I
=> MI=NI (5)
Mà BM = BN (6)
Từ (5) và (6) => BI là đường trung trực của MN
=> BI ⊥ MN
Có gì không hiểu bạn cứ hỏi mình