cho tam giác ABC vuông ở A có AB = 6cm, AC = 8cm
a, Tính độ dài cạnh BC
b, Kẻ AH vuông góc với BC biết AH = 4,8 cm. Tính độ dài đoạn BH, CH.
NHANH NHANH GIÚP MIK NHÉ
MIK CẢM ƠN TRƯỚC
<3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
\(BC=HC+HB=16+9=25\left(cm\right)\)
\(BC^2=AB^2+AC^2\Rightarrow AB^2=BC^2-AC^2=25^2-20^2=625-400=225=15^2\)
\(\Rightarrow AB=15\left(cm\right)\)
\(AH^2=HC.HB=16.9=4^2.3^2\Rightarrow AH=3.4=12\left(cm\right)\)
Bài 6:
\(AB=AC=4\left(cm\right)\) (Δ ABC cân tại A)
\(BH=HC=2\left(cm\right)\) (Ah là đường cao, đường trung tuyến cân Δ ABC)
\(BC=BH+HC=2+2=4\left(cm\right)\)
Chu vi Δ ABC :
\(4+4+4=12\left(cm\right)\)
a/
∆ABC vuông tại A, AH, vuông góc BC
=> AB.AH = HB.AC
=> AB = 15Ta có: BC^2 = AB^2 + AC^2=> BC = 25=> HB = BC - BH = 25-9 = 16
a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AH^2+BH^2=AB^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\)
hay AB=15(cm)
Vậy: AB=15cm
a: BC=10cm
AH=4,8cm
BH=3,6cm
b: Xét ΔABC vuông tại A có
\(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}=53^0\)
\(\Delta ABC\) vuông tại A
\(\Rightarrow BC^2=AB^2+AC^2=6^2+8^2=100\)
\(\Rightarrow BC=10\left(cm\right)\)
\(\Delta ABC\) vuông tại A, đường cao AH
\(\Rightarrow AH.BC=AB.AC\) (hệ thức lượng)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
\(\Delta ABC\) vuông tại A, đường cao AH
\(\Rightarrow AB^2=BH.BC\) (hệ thức lượng)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)
\(\Rightarrow CH=BC-BH=10-3,6=6,4\left(cm\right)\)
Áp dụng định lý pitago vào tam giác ABC, có ah vuông góc với bc:
BC= căn của AC2 +AB2
BC= 10
Áp dụng hệ thức lượng vào tam giác ABH vuông tại H:
AB2=BC.BH
62 = 10.BH
3,6=BH
ta có: HC= 10-3,6=6,4
Áp dụng hệ thức lượng vào tam giác ABC có AH vuông BC:
AH2=BH.HC
AH2=23,04
AH= 4,8
Áp dụng định lý Pitago cho tam giác vuông ACH:
\(AC=\sqrt{AH^2+HC^2}=10\left(cm\right)\)
Áp dụng hệ thức lượng cho tam giác vuông ABC:
\(AC^2=CH.BC\Rightarrow BC=\dfrac{AC^2}{CH}=\dfrac{25}{2}\) (cm)
\(\Rightarrow BH=BC-CH=\dfrac{9}{2}\left(cm\right)\)
Pitago tam giác vuông ABC:
\(AB=\sqrt{BC^2-AC^2}=\dfrac{15}{2}\left(cm\right)\)
b.
Áp dụng hệ thức lượng cho tam giác vuông ACH:
\(HD.AC=AH.HC\Rightarrow HD=\dfrac{AH.HC}{AC}=\dfrac{24}{5}\left(cm\right)\)
Tiếp tục là hệ thức lượng:
\(AH^2=AD.AC\Rightarrow AD=\dfrac{AH^2}{AC}=\dfrac{18}{5}\left(cm\right)\)
\(S_{AHD}=\dfrac{1}{2}AD.HD=\dfrac{216}{25}\left(cm^2\right)\)