K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

14 tháng 7 2023

Bài 3 :

\(BC=HC+HB=16+9=25\left(cm\right)\)

\(BC^2=AB^2+AC^2\Rightarrow AB^2=BC^2-AC^2=25^2-20^2=625-400=225=15^2\)

\(\Rightarrow AB=15\left(cm\right)\)

\(AH^2=HC.HB=16.9=4^2.3^2\Rightarrow AH=3.4=12\left(cm\right)\)

Bài 6:

\(AB=AC=4\left(cm\right)\) (Δ ABC cân tại A)

\(BH=HC=2\left(cm\right)\) (Ah là đường cao, đường trung tuyến cân Δ ABC) 

\(BC=BH+HC=2+2=4\left(cm\right)\)

Chu vi Δ ABC :

\(4+4+4=12\left(cm\right)\)

25 tháng 2 2021

a/

∆ABC vuông tại A, AH, vuông góc BC

=> AB.AH = HB.AC

=> AB = 15Ta có: BC^2 = AB^2 + AC^2=> BC = 25=> HB = BC - BH = 25-9 = 16

 

a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AH^2+BH^2=AB^2\)

\(\Leftrightarrow AB^2=9^2+12^2=225\)

hay AB=15(cm)

Vậy: AB=15cm

a: BC=10cm

AH=4,8cm

BH=3,6cm

b: Xét ΔABC vuông tại A có 

\(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{C}=53^0\)

11 tháng 1 2022

a: BC=10cm

AH=4,8cm

BH=3,6cm

b: Xét ΔABC vuông tại A có 

sinB=ACBC=45sin⁡B=ACBC=45

nên ˆC=530

30 tháng 10 2021

\(\Delta ABC\) vuông tại A

\(\Rightarrow BC^2=AB^2+AC^2=6^2+8^2=100\)

\(\Rightarrow BC=10\left(cm\right)\)

\(\Delta ABC\) vuông tại A, đường cao AH

\(\Rightarrow AH.BC=AB.AC\) (hệ thức lượng)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)

\(\Delta ABC\) vuông tại A, đường cao AH

\(\Rightarrow AB^2=BH.BC\) (hệ thức lượng)

\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

\(\Rightarrow CH=BC-BH=10-3,6=6,4\left(cm\right)\)

30 tháng 10 2021

A B C H 6 8 Áp dụng định lý pitago vào tam giác ABC, có ah vuông góc với bc:

                         BC= căn của AC2  +AB2

                               BC= 10

Áp dụng hệ thức lượng vào tam giác ABH vuông tại H:

                 AB2=BC.BH

                 62 = 10.BH

                 3,6=BH

      ta có: HC= 10-3,6=6,4

Áp dụng hệ thức lượng vào tam giác ABC có AH vuông BC:

                   AH2=BH.HC

                   AH2=23,04

                   AH= 4,8

 

NV
23 tháng 6 2021

Áp dụng định lý Pitago cho tam giác vuông ACH:

\(AC=\sqrt{AH^2+HC^2}=10\left(cm\right)\)

Áp dụng hệ thức lượng cho tam giác vuông ABC:

\(AC^2=CH.BC\Rightarrow BC=\dfrac{AC^2}{CH}=\dfrac{25}{2}\) (cm)

\(\Rightarrow BH=BC-CH=\dfrac{9}{2}\left(cm\right)\)

Pitago tam giác vuông ABC:

\(AB=\sqrt{BC^2-AC^2}=\dfrac{15}{2}\left(cm\right)\)

b.

Áp dụng hệ thức lượng cho tam giác vuông ACH:

\(HD.AC=AH.HC\Rightarrow HD=\dfrac{AH.HC}{AC}=\dfrac{24}{5}\left(cm\right)\)

Tiếp tục là hệ thức lượng:

\(AH^2=AD.AC\Rightarrow AD=\dfrac{AH^2}{AC}=\dfrac{18}{5}\left(cm\right)\)

\(S_{AHD}=\dfrac{1}{2}AD.HD=\dfrac{216}{25}\left(cm^2\right)\)

NV
23 tháng 6 2021

undefined

30 tháng 10 2019