K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

Bài 1:Áp dụng C-S dạng engel

\(\frac{3}{xy+yz+xz}+\frac{2}{x^2+y^2+z^2}=\frac{6}{2\left(xy+yz+xz\right)}+\frac{2}{x^2+y^2+z^2}\)

\(\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{6}+\sqrt{2}\right)^2>14\)

15 tháng 2 2020

có sai đề ko bạn ? mik thấy nó ko theo quy luật nào hết

15 tháng 2 2020

Hình như đề sai rồi bn ơi
Mk đoán như z mới đúng:

x + ( x + 1 ) + ( x + 2 ) + ... + ( x + 2018 ) + ( x + 2019 ) = 2019

4 tháng 1 2019

\(\left|y-2018\right|=2018-y\)

\(\left|y-2018\right|\ge0\Rightarrow2018-y\ge0\Rightarrow y\le2018\)

\(\Leftrightarrow\orbr{\begin{cases}y-2018=2018-y\\-y+2018=2018-y\end{cases}}\Leftrightarrow\orbr{\begin{cases}2y=2.2018\\0=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=2018\left(TMĐK\right)\\y\le2018\end{cases}}}\)

cái đề bị làm sao ko bn(hay boul :D) ??? x,y thuộc N chứ ????? ( y bé hơn hoặc bằng 2018)

coi nha: \(y=-5\Rightarrow2018-\left(-5\right)=2023=2^x+2019\Rightarrow2^x=4\Rightarrow x=2\)

\(y=-9\Rightarrow2018-y=2018-\left(-9\right)=2027\Rightarrow2^x=8\Rightarrow x=3\)

\(y=-17\Rightarrow2018-\left(-17\right)=2035=2^x+2019\Rightarrow2^x=16\Rightarrow x=4\)

xét đến mai ????

còn nếu x,y thuộc N:

\(y\le2018\left(\text{lúc nãy chứng minh rồi}\right)\Rightarrow0\le y\le2018\left(\text{vì y thuộc N}\right)\Rightarrow2018-y\le2018\)

\(2^x+2019\ge2020\)=> ko có g/trị x và y nào đồng thời t/m \(2^x+2019=\left|y-2018\right|=2018-y\)

p/s: có gì sai bỏ qua :)

11 tháng 3 2019

gọi x+[x+1]+[x+2]+...+2018+2019=0là A

2A=[X+2019]+..+[2019+X]=0

=>X LÀ SỐ ĐỐI CỦA 2019 

=>X=-2019

cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~

Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)

Ta có :

gtx2xy(5x5y)x+8=0(xy)(x5)(x5)=3(5x)(xy1)=3gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3

Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của 33 là sẽ tìm được nghiệm nguyên của PT

24 tháng 3 2021
Chịu nha bạn
17 tháng 1 2019

\(x+\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+\left(x+4\right)+........+\left(x+2019\right)=2019\)

\(\Rightarrow\left(x+x+x+x+.........+x+x+\right)+\left(1+2+3+4+........+2018+2019\right)=2019\)

\(\Rightarrow2020x+2039190=2019\)(Tự làm tiếp )

14 tháng 2 2020

no i don't think i'll