giải hệ phương trình :
\(\hept{\begin{cases}x^2+xy=6\\4y^2+3xy=10\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\hept{\begin{cases}x^2+3xy=10\\x^2+xy+4y^2+3xy=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2y\right)^2=16\\x^2+3xy=10\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+2y=4\Rightarrow x=4-2y\\x^2+3xy=10\end{cases}}\) hoặc \(\hept{\begin{cases}x+2y=-4\Rightarrow x=-4-2y\\x^2+3xy=10\end{cases}}\)
Xong thế x=4-2y hoặc -4-2y vào phương trình x^2 +3xy=10 thành phương trình bậc 2 một ẩn, GPT=> x,y
\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)
\(\hept{\begin{cases}2x^2+3xy+y^2=12\\x^2-xy+3y^2=11\end{cases}\Leftrightarrow\hept{\begin{cases}22x^2+3xy+11y^2=121\\x^2-xy+3y^2=121\end{cases}}}\)
\(\Rightarrow10x^2+45xy-25y^2=0\)
\(\Leftrightarrow\left(2x-y\right)\left(x+5y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{y}{2}\\x=-5y\end{cases}}\)
Với \(x=\frac{y}{2}\)ta được \(\hept{\begin{cases}x=1\\y=2\end{cases};\hept{\begin{cases}x=-1\\y=-2\end{cases}}}\)
Với x=-5y ta được \(\hept{\begin{cases}x=\frac{-5\sqrt{3}}{2}\\y=\frac{\sqrt{3}}{3}\end{cases};\hept{\begin{cases}x=\frac{5\sqrt{3}}{3}\\y=\frac{\sqrt{3}}{3}\end{cases}}}\)
a) \(\hept{\begin{cases}x^2-3xy+y^2=-1\left(1\right)\\3x^2-xy+3y^2=13\left(2\right)\end{cases}}\)
Lấy (2) trừ (1)
\(\Rightarrow x^2+xy+y^2=7\) (3)
Từ (3) và (2)
\(\Leftrightarrow3x^2+3y^2-13+x^2+xy+y^2=7\)
\(\Leftrightarrow x^2+y^2=5\)(4)
Thay( 4) vào (1)
\(\Rightarrow xy=\frac{10}{3}\)
Thay xy vào (1)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=\frac{7}{3}\\\left(x+y\right)^2=\frac{47}{3}\end{cases}}\)
=> tìm đc x ; y
cho mk hỏi: bạn lấy 2() trừ (1) mà sao ra x2 + xy + y2 vậy?
\(\hept{\begin{cases}x^2+xy=6\left(1\right)\\4y^2+3xy=10\end{cases}}\)
cộng vế với vế, tta được :
\(x^2+4xy+4y^2=16\Leftrightarrow\left(x+2y\right)^2=16\Leftrightarrow\orbr{\begin{cases}x+2y=4\\x+2y=-4\end{cases}}\)
+) với x + 2y = 4 \(\Rightarrow x=4-2y\)
Thay vào ( 1 ), ta được : \(\left(4-2y\right)^2+\left(4-2y\right)y=6\Rightarrow2y^2-12y+10=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=5\Rightarrow x=-6\\y=1\Rightarrow x=2\end{cases}}\)
+) với x + 2y = -4 . làm tương tự
ghê vậy cha