Tìm số tự nhiên nhỏ nhất để khi chia cho: 13 ; 19 ; 23 thì được lần lượt các số dư là : 8 ; 14 ;18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Chia cho 8 dư 6 là 190;chia 12 dư 10 là 286;chia 15 dư 13 là 358 . 2)Số tự nhiên nhỏ nhất khi chia cho 3;4;5 có số dư theo thứ tự 1;3;1 là 4;7;6. Mình ko chắc đâu nha!!!
câu 1 sai đề đúng ko bạn
phải là cái này mới đúng :1)tìm số tự nhiên nhỏ nhất khi chia cho 8 dư 6;chia 12 dư 10;chia 15 dư 16 và chia hết cho 23
câu b phải là 7 chứ bạn
Gọi a là số tự nhiên cần tìm.
a chia 17 dư 5 => a = 17m + 5
a chia 19 dư 12 => a = 19n + 12
Do đó:
a + 216 = 17m + 221 chia hết cho 17.
a + 216 = 17n + 228 chia hết cho 19
=> a + 216 chia hết cho 17 và chia hết cho 19.
mà a là số tự nhiên nhỏ nhất nên a + 216 là BCNN của 17 và 19.
BCNN(17 , 19) = 17.19 = 323.
=> a + 216 = 323
=> a = 323 - 216
Vậy a = 107.
Gọi so can tim la x
Theo bài ra ta có
x = 7a + 5 va x= 13b + 4
Ta lại có x + 9 = 7a + 14 = 13b + 13
-> x + 9 chia hết cho 7 và 13
-> x + 9 chia hết cho 7.13 = 91
-> x + 9 = 91m -> x = 91m - 9 = 91(m -1 + 1) - 9 = 91(m-1) + 82
Vậy x chia 91 dư 82
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.
Gọi số tự nhiên đó là x
Vì x chia 18 dư 7 => x + 11 chia hết cho 18
Vì x chia 24 dư 13 => x + 11 chia hết cho 24
=> x + 11 chia hết cho 18;24
=> x + 11 \(\in\) BC(18;24) = {0;72;144;...}
=> x \(\in\) {61;133;...}
Mà x là số bé nhất nên x = 61
Gọi số đó là a
a chia 18 dư 7 => a + 11 chia hết cho 18
a chia 24 dư 13 => a + 11 chia hết cho 24
=> a + 11 \(\in\) BC (18; 24)
Mà a nhỏ nhất nên a + 11 = BCNN (18; 24)
18 = 2.32; 24 = 3.23 => a + 11 = 23.32 = 72 => a = 61
Vậy...
a) n chia 11 dư 6, chia 17 dư 12, chia 29 dư 24 => n chia 11;17;29 đều thiếu 5
=>n+5 chia hết cho 11;17;29
Vì n nhỏ nhất =>n+5 là BCNN(11;17;29)
Vì 11;17;29 nguyên tố cùng nhau
=>n+5= BCNN(11;17;29)=11x17x29=5423
=>n=5423-5=5418
b) Gọi số tự nhiên cần tìm là x
x chia 13 dư 8, chia 19 dư 14 => x chia 13;19 đều thiếu 5
=> x+5 chia hết cho 13;19 Vì x nhỏ nhất => x+5 là BCNN(13;19)
Vì 13;19 nguyên tố cùng nhau
=> x+5=BCNN(13;19)=13x19=247
=> x+5 thuộc B(247)={0;247;494;741;988;1235;1482;...}
Để có số tận cùng là 7 => x+5 tận cùng là 2 => x+5=1482
x=1482-5
x=1477
Gọi số cần tìm là a (a \(\in\) N*)
Theo đề bài : a chia 18 dư 7 và a chia 24 dư 13
=> a - 11 chia hết cho 18 và 24
hay a - 11 \(\in\) BC(18; 24)
Do a nhỏ nhất nên a - 11 = BCNN(18; 24) = 72
=> a = 72 + 11 = 83
Số cần tìm là 83
\(\text{Gọi số tự nhiên đó là }a\)
\(\text{Ta có:}a=13x+8=19y+14=23z+18\left(\text{x;y;z là các số tự nhiên}\right)\)
\(\Rightarrow a+5=13\left(x+1\right)=19\left(y+1\right)=23\left(z+1\right)\)
\(\Rightarrow a+5\text{ chia hết cho 13;19;23 ta sẽ chọn a+5 nhỏ nhất nên:}a+5=BCNN\left(13;19;23\right)=5681\)
\(\Rightarrow a=5676\)
gọi số cần tìm là a
theo bài ra ta có:
a+5 chia hết cho 13,19,23; a+5 nhỏ nhất
=> a+5= BCNN(13,19,23)
Mà BCNN(13,19,23)=5681
=> a+5=5681
a=5681-5
a=5676
Vậy số cần tìm là 5676