chứng minh rằng nếu nhân các giá trị của dấu hiệu với 1 hằng số thì số trung bình của giá trị cũng được nhân lên với hằng số đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
a, Ta có ; X = x1 n1+x2 n2+ x3+ n3+...+xk nk
N
<=> qX = q (x1 n1+x2 n2 + x3 n3 +...+ xk nk )
N
= ( qx1)n1+(qx2)n2 +( qx3)n3+...+(qxk)nk
N
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
chưa học hằng số nha ở lớp 7 chưa học
Ta có : \(\overline{x}=\frac{x_1n_1+x_2n_2+x_3n_3+...+x_kn_k}{N}\)
\(\Leftrightarrow q\overline{x}=\frac{q\left(x_1n_1+x_2n_2+x_3n_3+...+x_kn_k\right)}{N}\)
\(=\frac{\left(qx_1\right)n_1+\left(qx_2\right)n_2+\left(qx_3\right)n_3+...+\left(qx_k\right)n_k}{N}\)