K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình tự vẽ nha

a)Vì tam giác có AB=AE và góc BAE bằng 90 đọ nên tam giác BAE vuông cân mà AM là tia phân giác của góc BAE nên AM cùng là đg cao và là đg trung tuyến của tam giác BAE(tự chúng minh)

Suy ra BM=AM=MC(tính chất đg trung tuyến của tam giác vuông) và góc BMA bằng 90 độ.Do đó tam giác ABM vuông cân(ĐPCM)

b)Xét 2 tam giác BHA và tam giác AIE lần lượt vuông tại H,I có:

BA=AE

góc BAH=góc AEI(vì cùng phụ với góc IAE)

Suy ra tam giác BHA =tam giác AIE(cạnh huyền-góc nhọn kề)

Suy ra IE=AH(đpcm)

c)từ E kẻ đg vuông góc với IE cắt BC tại D,nối M với D 

Ta có:IH vuông góc với IE mà ED vuông góc với IE nên IH song song với DE.Suy ra có 2 cặp song song với nhau và cắt nhau đó là HD với IE,IH với ED

Do đó áp dụng t/c đoạn chắn suy ra IE=HD mà IE=AH nên AH =HD

Ta lại có:IH song song vói ED mà IH vuông góc với BC nên ED vuông góc với BC

Suy ra tam giác BDE vuông góc tại D

Xét tam giác BDE có đg trung tuyến MD(vì M là trung điểm của BE(câu A)) nên BM=MD=ME(t/c đg trung tuyến của tam giác vuông)

Mà AM=BM=ME(câua)) nên MA=MD

Suy ra tam giác AHM=tam giác DHM(c.c.c)

Suy ra góc AHM=góc DHM,mà tổng 2 góc này bằng 90 độ nên góc AHM=góc DHM=45 độ(đpcm)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

 

9 tháng 5 2023

a. Xét ΔHBA và ΔABC có:

       \(\widehat{H}=\widehat{A}\) = 900 (gt)

        \(\widehat{B}\) chung

\(\Rightarrow\)  ΔHBA \(\sim\) ΔABC (g.g)

b. Vì  ΔABC vuông tại A

Theo đ/lí Py - ta - go ta có:

  BC2 = AB2 + AC2

  BC2 = 32 + 42

\(\Rightarrow\) BC2 = 25 cm

\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm

Ta lại có:  ΔHBA \(\sim\) ΔABC

   \(\dfrac{AH}{CA}=\dfrac{BA}{BC}\) 

\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\) 

\(\Rightarrow\) AH = 2,4 cm

Xét ΔABC có BM là đường phân giác

nên AM/AB=CM/CB

=>AM/3=CM/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)

Do đó: AM=1,5(cm)

Xét ΔABM vuông tại A và ΔDEF vuông tại D có 

AB/DE=AM/DF

Do đó: ΔABM\(\sim\)ΔDEF

a: góc C<góc B

=>AB<AC

b: Xét ΔABM co AB=AM và góc A=60 độ

nên ΔAMB đều

20 tháng 2 2022

a, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=5cm\)

Theo định lí Pytago tam giác MNP vuông tại N

\(NP=\sqrt{MP^2-MN^2}=6cm\)

b, Xét tam giác ABC và tam giác NPM có 

^BAC = ^PNM = 900

\(\dfrac{AB}{NP}=\dfrac{AC}{NM}=\dfrac{3}{6}=\dfrac{4}{8}=\dfrac{1}{2}\)

Vậy tam giác ABC ~ tam giác NPM ( c.g.c ) 

a: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

\(NP=\sqrt{10^2-8^2}=6\left(cm\right)\)

b: Xét ΔABC vuông tại A và ΔNPM vuông tại N có 

AB/NP=AC/NM

Do đó: ΔABC\(\sim\)ΔNPM

3: 

\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

HB=12^2/20=7,2cm

=>HC=20-7,2=12,8cm

\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)

\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)