K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có BM là đường phân giác

nên AM/AB=CM/CB

=>AM/3=CM/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)

Do đó: AM=1,5(cm)

Xét ΔABM vuông tại A và ΔDEF vuông tại D có 

AB/DE=AM/DF

Do đó: ΔABM\(\sim\)ΔDEF

ΔABC đồng dạng với ΔDEF

=>AB/DE=BC/EF=AC/DF=k=1/3

=>3/DE=4/DF=1/3

=>DE=9cm; DF=12cm

ΔABC đồng dạng với ΔDEF

=>góc B=góc E=60 độ; góc C=góc F=30 độ

góc A=góc D=180-60-30=90 độ

20 tháng 2 2022

a, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=5cm\)

Theo định lí Pytago tam giác MNP vuông tại N

\(NP=\sqrt{MP^2-MN^2}=6cm\)

b, Xét tam giác ABC và tam giác NPM có 

^BAC = ^PNM = 900

\(\dfrac{AB}{NP}=\dfrac{AC}{NM}=\dfrac{3}{6}=\dfrac{4}{8}=\dfrac{1}{2}\)

Vậy tam giác ABC ~ tam giác NPM ( c.g.c ) 

a: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

\(NP=\sqrt{10^2-8^2}=6\left(cm\right)\)

b: Xét ΔABC vuông tại A và ΔNPM vuông tại N có 

AB/NP=AC/NM

Do đó: ΔABC\(\sim\)ΔNPM

Đường cao AH hay DK vậy bạn?

ΔABC đồng dạng với ΔDEF
=>AB/DE=BC/EF=AC/DF

=>7/EF=5/DF=3/6=1/2

=>EF=14cm; DF=10cm

21 tháng 3 2023

ΔABC đồng dạng với ΔDEF
=>AB/DE=BC/EF=AC/DF

=>7/EF=5/DF=3/6=1/2

=>EF=14cm; DF=10cm

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

Do đó: ΔABC\(\sim\)ΔHAC

b: Ta có: ΔABC\(\sim\)ΔHAC

nên AC/HC=BC/AC

hay \(AC^2=BC\cdot HC\)

c: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

10 tháng 5 2022

a, Xét Δ ABC và Δ HAC, có :

\(\widehat{ACB}=\widehat{HCA}\) (góc chung)

\(\widehat{BAC}=\widehat{AHC}=90^o\)

=> Δ ABC ∾ Δ HAC (g.g)

b, Ta có : Δ ABC ∾ Δ HAC (cmt)

=> \(\dfrac{AC}{HC}=\dfrac{BC}{AC}\)

=> \(AC^2=BC.HC\)

c, Xét Δ ABC, có :

\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)

=> \(BC^2=3^2+4^2\)

=> \(BC^2=25\)

=> \(BC=5\left(cm\right)\)

 

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔACB có AD là phân giác

nên BD/AB=CD/AC
=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó:BD=30/7cm; CD=40/7cm