K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chứng minh hay giải PT??

1 tháng 10 2019

\(DK:x\ge\frac{2019}{2020}\)

\(\Leftrightarrow\left(2020x-2019-2\sqrt{2020x-2019}+1\right)+\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{2020x-2019}-1\right)^2+\left(x-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2020x-2019}-1=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow x=1\left(n\right)\)

Vay nghiem cua PT la \(x=1\)

\(\Leftrightarrow x^2-2020x+2019=0\)

=>(x-1)(x-2019)=0

=>x=1 hoặc x=2019

28 tháng 2 2022

\(-x^2+2020x-2019=0\)

\(\Leftrightarrow x^2-2020x+2019=0\)

\(\Leftrightarrow x^2-x-2019x+2019=0\)

\(\Leftrightarrow x\left(x-1\right)-2019\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2019\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2019=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2019\end{matrix}\right.\)

21 tháng 6 2021

f(x) = \(\left(x^6-2019x^5\right)-\left(x^5-2019x^4\right)+\left(x^4-2019x^3\right)-\left(x^3-2019x^2\right)+\left(x^2-2019x\right)-\left(x-2019\right)+1\)

\(x^5\left(x-2019\right)-x^4\left(x-2019\right)+x^3\left(x-2019\right)-x^2\left(x-2019\right)+x\left(x-2019\right)-\left(x-2019\right)+1\)

Thay x = 2019 vào f(x), ta có:

f(2019) = 0 + 0 + 0 + 0 + 0 +0 + 1 = 1

21 tháng 3 2022

1, Ta có: \(\Delta'=\left(-m\right)^2-\left(2m-1\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)

Suy ra pt luôn có 2 nghiệm

2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)

\(A=\left(x_1^2+x_2^2\right)-5x_1x_2\\ =\left(x_1+x_2\right)^2-7x_1x_2\\ =\left(2m\right)^2-7\left(2m-1\right)\\ =4m^2-14m+7\)

Đề sai r bạn

\(b,4m^2-14m+7\\ =4\left(m^2-\dfrac{7}{2}m+\dfrac{7}{4}\right)\\ =4\left(m^2-2.\dfrac{7}{4}m+\dfrac{49}{16}-\dfrac{21}{16}\right)\\ =4\left(m-\dfrac{7}{4}\right)^2-\dfrac{21}{4}\ge-\dfrac{21}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow m=\dfrac{7}{4}\)

Vậy m=`7/4` thì A đạt GTNN

 

1: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-1\right)\)

\(=4m^2-8m+4=\left(2m-2\right)^2>=0\forall m\)

Do đó: Phương trình luôn có hai nghiệm

2: \(A=\left(x_1+x_2\right)^2-7x_1x_2\)

\(=\left(-2m\right)^2-7\left(2m-1\right)\)

\(=4m^2-14m+7\)

8 tháng 7 2021

\(f\left(2019\right)=x^{100}-\left(2019+1\right)x^{99}+\left(2019+1\right)x^{98}-....+\left(2019+1\right)x^2-\left(2019+1\right)x+2000\)

\(=x^{100}-\left(x+1\right)x^{99}+\left(x+1\right)x^{98}-...+\left(x+1\right)x^2-\left(x+1\right)x+2000\)

\(=x^{100}-x^{100}-x^{99}+x^{99}+x^{98}-...+x^3+x^2-x^2-x+2000\)

\(=-x+2000=-2019+2000\)

\(=-19\)

21 tháng 5 2023

∆ = [-2(m + 2)]² - 4(m + 1)

= 4m² + 16m + 16 - 4m - 4

= 4m² + 12m + 12

= 4m² + 12m + 9 + 3

= (2m + 3)² + 3 > 0 với mọi m

Vậy phương trình đã cho luôn có hai nghiệm phân biệt với mọi m