K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

Có :  \(\left(x-3\right)\left(ax+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\ax+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-\frac{2}{a}\end{cases}}\)   (1)

Có : \(\left(2x+b\right)\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+b=0\\x+4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{b}{2}\\x=-4\end{cases}}\)   (2)

Từ (1) và (2) 

\(\Leftrightarrow\hept{\begin{cases}-\frac{2}{a}=-4\\-\frac{b}{2}=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=-6\end{cases}}\)

Vậy để 2 phương trình trên tương đương thì \(x\in\left\{-4;3\right\}\)và \(\left(a;b\right)\in\left\{\left(\frac{1}{2};-6\right)\right\}\)