Tính tỉ số A/B biết: A=1/22.32+1/3.3+...+1/1073.2003
B=1/2.1974+1/3.1975+...+1/31.2003
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=...\)
\(=\frac{1}{30}\left(\frac{30}{2.32}+\frac{30}{3.33}+...+\frac{30}{1973.2003}\right)\)
\(=\frac{1}{30}\left(\frac{1}{2}-\frac{1}{32}+\frac{1}{3}-\frac{1}{33}+...+\frac{1}{1973}-\frac{1}{2003}\right)\)
\(=\frac{1}{30}\left[\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1973}\right)-\left(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{2003}\right)\right]\)
\(=\frac{1}{30}\left[\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{31}\right)-\left(\frac{1}{1974}+\frac{1}{1975}+...+\frac{1}{2003}\right)\right]\)
\(Q=...\)
\(=\frac{1}{1972}\left(\frac{1972}{2.1974}+\frac{1972}{3.1975}+...+\frac{1}{31.2003}\right)\)
\(=\frac{1}{1972}\left(\frac{1}{2}-\frac{1}{1974}+\frac{1}{3}-\frac{1}{1975}+...+\frac{1}{31}-\frac{1}{2003}\right)\)
\(=\frac{1}{1972}\left[\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{31}\right)-\left(\frac{1}{1974}+\frac{1}{1975}+...+\frac{1}{2003}\right)\right]\)
\(A=\frac{1}{2.32}+\frac{1}{3.33}+...+\frac{1}{1973.2003}\)
\(=\frac{1}{30}\left(\frac{1}{2}-\frac{1}{32}+\frac{1}{3}-\frac{1}{33}+...+\frac{1}{1973}-\frac{1}{2003}\right)\)
\(=\frac{1}{30}\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1973}-\frac{1}{32}-\frac{1}{33}-\frac{1}{2003}\right)\)
\(=\frac{1}{30}\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{31}-\frac{1}{1974}-\frac{1}{1975}-...-\frac{1}{2003}\right)\)
\(B=\frac{1}{2.1974}+\frac{1}{3.1975}+...+\frac{1}{31.2003}\)
\(=\frac{1}{1972}\left(\frac{1}{2}-\frac{1}{1974}+\frac{1}{3}-\frac{1}{1975}+...+\frac{1}{31}-\frac{1}{2003}\right)\)
\(=\frac{1}{1972}\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{31}-\frac{1}{1974}-\frac{1}{1975}-...-\frac{1}{2003}\right)\)
Vậy \(\frac{A}{B}=\frac{1972}{30}\)
\(S=1.3^0+2.3^1+3.3^2+...+11.3^{10}\)
\(3S=1.3^1+2.3^2+...+11.3^{11}\)
\(\Rightarrow S-3S=1+3^1+3^2+...+3^{10}-11.3^{11}\)
\(\Rightarrow-2S=1.\dfrac{3^{11}-1}{3-1}-11.3^{11}\)
\(\Rightarrow-2S=\dfrac{1}{2}.3^{11}-\dfrac{1}{2}-11.3^{11}\)
\(\Rightarrow-2S=-\dfrac{21.3^{11}+1}{2}\)
\(\Rightarrow S=\dfrac{1}{4}+\dfrac{21.3^{11}}{4}\)
Lời giải:
$A=1(1+1)+2(2+1)+3(3+1)+....+98(98+1)$
$=(1.1+2.2+3.3+...+98.98)+(1+2+3+...+98)$
$=B+(1+2+3+...+98)$
$\Rightarrow A-B=1+2+3+...+98=98.99:2=4851$
ta có
\(3^{1+2+3+..+x}=3^{3.12}\Leftrightarrow\frac{x\left(x+1\right)}{2}=36\)
\(\Leftrightarrow x.\left(x+1\right)=72=8.9\Leftrightarrow x=8\)
b. ta có
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+..+\frac{1}{5^{2016}}=\left(\frac{1}{5}+\frac{1}{5^2}+..+\frac{1}{5^{2016}}+\frac{1}{5^{2017}}\right)+1-\frac{1}{5^{2017}}\)
\(=A+1-\frac{1}{5^{2017}}\Rightarrow4A=1-\frac{1}{5^{2017}}< 1\Rightarrow A< \frac{1}{4}\)
vào câu hỏi tương tự
Câu tìm câu hỏi tương tự mà nghĩ ra