K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

c: Xét ΔAHB vuông tại H có HM là đường cao 

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao 

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o

19 tháng 12 2022

xét △ABC vuông tại A

BC2= AB2+ AC2

BC2= 32+ 42

BC2= 25

BC=\(\sqrt{25}=5\)

Xét △ABC vuông tại A, có AH là đường cao

AB.AC=AH.BC

3.4=AH.5

AH= \(\dfrac{3.4}{5}=2,4\)

Xét △ ABC vuông tại A

AB2= BH.BC

32= BH. 5

BH= 1,8

 

 

19 tháng 12 2022

tham khảo ở đây 

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-a-duong-cao-ah-biet-ab-3cm-ac-4cm-tinh-do-dai-cac-canh-bc-ah-va-so-do-goc-acb-lam-tron-den-do.1482642245232 

tính BH

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại ta có 

AB2=BC.BH \(\Leftrightarrow\)  BH=AB2/BC \(\Leftrightarrow\) BH=9/5

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:

a.

Áp dụng hệ thức lượng trong tam giác vuông ta có:

$AH^2=BH.CH=3.4=12$

$\Rightarrow AH=\sqrt{12}=2\sqrt{3}$ (cm)

$AB^2=BH.BC=BH(BH+CH)=3(3+4)=21$

$\Rightarrow AB=\sqrt{21}$ (cm)

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Hình vẽ:
loading...

18 tháng 6 2017

Áp dụng định lý Pytago trong ∆ ABC vuông tại A ta có:

Áp dụng hệ thức lượng trong ABC vuông tại A có đường cao AH ta có:

Đáp án cần chọn là: B

NV
15 tháng 7 2021

Áp dụng hệ thức lượng:

\(AB^2=BH.BC\Rightarrow BC=\dfrac{AB^2}{BH}=12\left(cm\right)\)

Áp dụng định lý Pitago:

\(AC=\sqrt{BC^2-AB^2}=6\sqrt{3}\left(cm\right)\)

Hệ thức lượng:

\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=3\sqrt[]{3}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BC=\dfrac{6^2}{3}=12\left(cm\right)\)

Ta có:BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=12-3=9(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow AH^2=3\cdot9=27\)

hay \(AH=3\sqrt{3}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=12^2-3^2=135\)

hay \(AC=3\sqrt{15}\left(cm\right)\)

16 tháng 12 2021

a: \(AH=4\sqrt{3}\left(cm\right)\)

HC=12cm

BC=16cm

13 tháng 3 2022

+xét tam giác ABC vuông tại A:

=> BC2=AC2+AB2(Định lý pytago)

hay BC2=16+9

BC2= 25

Mà BC>0

=> BC=5(cm)

+xét tam giác ABH vuông tại H và tam giác ABC vuông tại A có:

GÓC B: góc chung

góc A=góc H=90độ (tam giác ABC vuông tại A,AH:đường cao)

=> tam giác ABH đồng dạng với tam giác ABC(góc-góc)

=> BH/AB=BA/BC(các cặp cạnh tương ứng tỉ lệ)

hay BH/3=3/5

=> BH=1,8(cm)

=> HC=5-1,8=4,8(cm) 

p/s: mình thấy sai sai , vì sao có dữ liệu phân giác góc C mà lại không dùng đến(bạn tham khảo thử bài mình thôi nhé).Các góc,đồng dạng,độ , bạn cùng kí hiệu.Thông cảm hình mình vẽ hơi tởm=))

20 tháng 9 2021

GIÚP mình thật đầy đủ nhất

Bài 2: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{25}{36}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: HB+HC=BC

\(\Leftrightarrow HC\cdot\dfrac{61}{36}=122\)

\(\Leftrightarrow HC=72\left(cm\right)\)

hay HB=50(cm)