5 va 12\13 - 2 va 15\26 + 1\26
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}26⋮x\\x\ge13\end{matrix}\right.\Rightarrow x\in\left\{13;26\right\}\)
\(\left\{{}\begin{matrix}16⋮x\\x< 8\end{matrix}\right.\Rightarrow x\in\left\{1;2;4\right\}\)
\(\left\{{}\begin{matrix}18⋮x\\0< x< 40\end{matrix}\right.\Rightarrow x\in\left\{1;2;3;6;9;18\right\}\)
\(\left\{{}\begin{matrix}x⋮15\\30< x< 40\end{matrix}\right.\Rightarrow x\in\varnothing\)
\(\left\{{}\begin{matrix}x⋮12\\22\le5x\le50\end{matrix}\right.\Rightarrow x\in\varnothing\)
\(\left\{{}\begin{matrix}x⋮4\\16\le x\le36\end{matrix}\right.\Rightarrow x\in\left\{16;20;24;28;32;36\right\}\)
Bài 1 :
Ta có :
\(2\sqrt{5}-5-\left(\sqrt{5}-3\right)=\sqrt{5}-8=\sqrt{5}-\sqrt{64}< 0\)
\(\Rightarrow2\sqrt{5}-5< \sqrt{5}-3\)
Vậy ...
Bài 2 :
Ta có :
\(\sqrt{17}>\sqrt{16}\)
\(\sqrt{26}>\sqrt{25}\)
\(\Rightarrow\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}=4+5=9\)
Vậy ...
Bài 3 :
\(13\sqrt{35}=\sqrt{169}.\sqrt{35}>\sqrt{48}.\sqrt{1}=48\)
Vậy ...
\(26^{14}>25^{14}=\left(5^2\right)^{14}=5^{28}\)
\(5^{30}=\left(5^3\right)^{10}=125^{10}>124^{10}\)
\(4^{21}=\left(4^3\right)^7=64^7>64^2\)
\(27^{16}.16^9=\left(3^3\right)^{16}.\left(4^2\right)^9=3^{48}.4^{18}>12^{18}=3^{18}.4^{18}\)
\(31^{11}16^{14}=\left(2^4\right)^{14}=2^{56}\)
\(2^{56}>2^{55}\) => \(17^{14}>31^{11}\)
Các bài khác làm tương tự
Bài 1 :
a) \(\dfrac{42}{43}=1-\dfrac{1}{43}\)
\(\dfrac{58}{59}=1-\dfrac{1}{59}\)
Mà \(\dfrac{1}{43}>\dfrac{1}{59}\Leftrightarrow\dfrac{42}{43}< \dfrac{58}{59}\)
b) \(\dfrac{18}{31}>\dfrac{15}{31}>\dfrac{15}{37}\)
\(\Leftrightarrow\dfrac{18}{31}>\dfrac{15}{37}\)
c) \(\dfrac{53}{57}=1-\dfrac{4}{57}\)
\(\dfrac{531}{517}=1-\dfrac{40}{517}\)
Mà \(\dfrac{4}{57}=\dfrac{40}{570}>\dfrac{40}{517}\)
\(\Leftrightarrow\dfrac{53}{57}< \dfrac{531}{517}\)
= 77/13 -67/26 + 1/26
= 77/13 - 66/26
= 154/26 -66/26
= 88/26
= 44/13