K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2020

\(A=\frac{3}{a^2+b^2}+\frac{2}{ab}\)

\(=\frac{3}{a^2+b^2}+\frac{4}{2ab}\ge\frac{\left(\sqrt{3}+2\right)^2}{\left(a+b\right)^2}\)(cauchy-schwarz dạng engel)

\(=7+4\sqrt{3}\)

NV
27 tháng 9 2019

\(J=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{2\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\ge6\)

\(\Rightarrow J_{min}=6\) khi \(a=b=\frac{1}{2}\)

28 tháng 1 2019

áp dụng bdt cô-si ta có P\(\ge\)2

dấu = xảy ra khi (a+b)2=ab 

28 tháng 1 2019

\(\text{Giải}\)

\(P=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)

Ấp dụng BĐT Cô-si ta có:

\(a+b\ge2\sqrt{ab}\)

\(P=\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}+\frac{a+b}{\sqrt{ab}}.\frac{3}{4}\)

\(\text{ÁP DỤNG BĐT Cô-si Ta đc:}\)\(\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\ge2\sqrt{\frac{\left(a+b\right)\left(\sqrt{ab}\right)}{4\sqrt{ab}\left(a+b\right)}}=1\)

Theo BĐT Cô si ta đc:\(\frac{3}{4}.\frac{a+b}{\sqrt{ab}}\ge\frac{3}{4}.2=\frac{3}{2}\)

\(\Rightarrow P_{min}=\frac{3}{2}.\text{Dấu "=" xảy ra khi: a=b}\)

NV
27 tháng 9 2019

\(M=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)

\(\Rightarrow M\ge2\sqrt{\frac{a+b}{a+b}}+3=5\)

\(\Rightarrow M_{min}=5\) khi \(a=b=\frac{1}{2}\)