Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{1}{ab+2}+\frac{1}{bc+2}+\frac{1}{ca+2}\ge\frac{9}{ab+bc+ca+6}\ge\frac{9}{a^2+b^2+c^2+6}=1\)
Dấu "=" xảy ra <=> a = b = c = 1
Vậy GTNN của P = 1 đạt tại x = y = z = 1
Có : a^2+b^2 >= 2ab
Biểu thức trên = (a^2+b^2/4ab+ab/a^2+b^2)+3/4 (a^2+b^2/ab)
>= 2\(\sqrt{\frac{a^2+b^2}{4ab}.\frac{ab}{a^2+b^2}}\)+ 3/4 . 2 = 2.1/2+3/2 = 1+3/2 = 5/2
Dấu "=" xảy ra <=> a=b>0
Vậy GTNN của biểu thức trên = 5/2 <=> a=b > 0
k mk nha
1. Áp dụng BĐT Cauchy dạng Engle, ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
\(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)
\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)
\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)
\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)
Vì a, b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\left(\frac{a+b}{3}-1\right)\le0\Leftrightarrow a+b\le3\)
\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+2b+\frac{8}{a}+\frac{2}{b}-\left(a+b\right)\ge8+4-3=9\)
Áp dụng BĐT Cauchy cho a ; b dương
Dấu "=" xảy ra \(\Leftrightarrow a=2;b=1\)
\(A=\frac{3}{a^2+b^2}+\frac{2}{ab}\)
\(=\frac{3}{a^2+b^2}+\frac{4}{2ab}\ge\frac{\left(\sqrt{3}+2\right)^2}{\left(a+b\right)^2}\)(cauchy-schwarz dạng engel)
\(=7+4\sqrt{3}\)