Cho ba điểm: A ( 3 , 5 )
B ( -1 , -7 )
C ( 1 , -1 )
Chứng minh ba điểm A , B , C thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Gọi ptdt $(d)$ đi qua $A,B$ là $y=ax+b$
Ta có: \(\left\{\begin{matrix} y_A=ax_A+b\\ y_B=ax_B+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2=a+b\\ 1=a.0+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=1\\ a=1\end{matrix}\right.\)
Vậy ptđt $(d)$ là: $y=x+1$
b. Ta thấy: $y_C=-4=-5+1=x_C+1$ nên $C\in (d): y=x+1$
Tức là $C$ thuộc đt đi qua 2 điểm $A,B$
$\Rightarrow A,B,C$ thẳng hàng.
a. Gọi pt đường thẳng AB có dạng \(y=ax+b\)
Do đường thẳng AB qua A và B nên ta có:
\(\left\{{}\begin{matrix}2a+b=3\\-a+b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)
Phương trình AB: \(y=2x-1\) \(\Rightarrow\) hệ số góc \(a=2\)
b. Thay tọa độ C vào pt AB:
\(-1=2.0-1\) (thỏa mãn)
\(\Rightarrow C\) thuộc đường thẳng AB hay 3 điểm A;B;C thẳng hàng
\(\overrightarrow{AB}=\left(-4;-12\right)\)
\(\overrightarrow{AC}=\left(-1;-6\right)\)
Vì -4/-1<>-12/-6
nên A,B,C ko thẳng hàng
gọi pttq có dạng y=ax+b
đt đi qua A => 7=a+b (1)
đt đi qua B => 1=-a+b (2)
(1),(2) => a=3;b=4
=> đt đi qua A và B: (d):y=3x+4
Thay C vào đt (d) tm => 3 điểm A,B,C thẳng hàng => dpcm
\(\overrightarrow{AB}=\left(-9;5\right)\)
\(\overrightarrow{AC}=\left(-\dfrac{9}{4};\dfrac{1}{2}\right)\)
Vì \(\overrightarrow{AB}=k\cdot\overrightarrow{AC}\) nên A,B,C thẳng hàng
Tính tổng các số nguyên x biết :
1, -20<x<21
2, -18< -x<- 17
3,-27<x<-27
4, |x|<-3
5, |-x|<5
Mọi người giúp mình với HELP ME
a: Gọi (d): y=ax+b là phương trình đường thẳng BC
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=-1\\4a+b=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
Vậy: y=2x+1
b: Khi y=3 thì x+6=7
=>x=1
Thay x=1 và y=3 vào y=2x+1, ta được:
\(2\cdot1+1=3\)(đúng)
=>Ba đường đồng quy
c: \(\overrightarrow{AB}=\left(-3;-6\right)\)
\(\overrightarrow{BC}=\left(5;10\right)\)
Vì \(\dfrac{-3}{5}=\dfrac{-6}{10}\)
nên A,B,C thẳng hàng
Gỉa sử : A,B,C thẳng hàng
=>AB+BC=AC
Hay 3+4=5(vô lí)
=> A,B,C ko thẳng hàng