Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho x,y,z là 3 số thực thỏa mãn x+y+z=0.CMR:
\(\sqrt{3+4^x}+\sqrt{3+4^y}+\sqrt{3+4^z}\ge6\)
Ta có: \(4^x.4^y.4^z=4^{x+y+z}=4^0=1\)
Áp dụng BĐT cô - si cho 4 số dương:
\(3+4^x=1+1+1+4^x\ge4\sqrt[4]{4^x}\)\(\Rightarrow\sqrt{3+4^x}\ge2\sqrt{\sqrt[4]{4^x}}=2\sqrt[8]{4^x}\)
Tương tự ta có: \(\sqrt{3+4^y}\ge2\sqrt[8]{4^y}\);\(\sqrt{3+4^z}\ge2\sqrt[8]{4^z}\)
\(VT=\text{Σ}_{cyc}\sqrt{3+4^x}=2\left[\sqrt[8]{4^x}+\sqrt[8]{4^y}+\sqrt[8]{4^z}\right]\)
\(\ge2.3\sqrt[3]{\sqrt[8]{4^x.4^y.4^z}}=6\)
(Dấu "="\(\Leftrightarrow x=y=z=0\))
2k7 à ;giỏi wá
Ta có: \(4^x.4^y.4^z=4^{x+y+z}=4^0=1\)
Áp dụng BĐT cô - si cho 4 số dương:
\(3+4^x=1+1+1+4^x\ge4\sqrt[4]{4^x}\)\(\Rightarrow\sqrt{3+4^x}\ge2\sqrt{\sqrt[4]{4^x}}=2\sqrt[8]{4^x}\)
Tương tự ta có: \(\sqrt{3+4^y}\ge2\sqrt[8]{4^y}\);\(\sqrt{3+4^z}\ge2\sqrt[8]{4^z}\)
\(VT=\text{Σ}_{cyc}\sqrt{3+4^x}=2\left[\sqrt[8]{4^x}+\sqrt[8]{4^y}+\sqrt[8]{4^z}\right]\)
\(\ge2.3\sqrt[3]{\sqrt[8]{4^x.4^y.4^z}}=6\)
(Dấu "="\(\Leftrightarrow x=y=z=0\))
2k7 à ;giỏi wá