K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 1 2020

Lời giải:

Áp dụng BĐT Cô-si cho các số dương:

$a^{2014}+\underbrace{1+1+....+1}_{2013}\geq 2014\sqrt[2014]{a^{2014}}$

$\Leftrightarrow a^{2014}+2013\geq 2014a$

$\Rightarrow a^{2014}+2014> 2014a$

$\Rightarrow a^{2014}> 2014(a-1)$ (đpcm)

7 tháng 9 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a1}{a2}=\frac{a2}{a3}=....=\frac{a2014}{a2015}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\)

=>\(\frac{a1}{a2}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(1\right)\)

\(\frac{a2}{a3}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(2\right)\)

...........

\(\frac{a2014}{a2015}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(2014\right)\)

Nhân (1),(2),....(2014) vế với vế:

\(\frac{a_1}{a_2}.\frac{a_2}{a_3}............\frac{a_{2014}}{a_{2015}}=\frac{a_1}{a_{2015}}=\left(\frac{a_1+a_2+...+a_{2014}}{a_2+a_3+...+a_{2015}}\right)^{2014}\) 

Vậy...

AH
Akai Haruma
Giáo viên
30 tháng 1 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Online Math - Toán lớp 8 | Học trực tuyến

23 tháng 11 2021

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_{2013}}{a_{2014}}=\dfrac{a_{2014}}{a_1}=\dfrac{a_1+a_2+...+a_{2014}}{a_1+a_2+...+a_{2014}}=1\\ \Leftrightarrow a_1=a_2=...=a_{2014}\\ \Leftrightarrow Q=\dfrac{\left(2014a_1\right)^2}{a_1^2\left(1+2+...+2014\right)}=\dfrac{2014^2\cdot a_1^2}{a_1^2\cdot\dfrac{2015\cdot2014}{2}}=\dfrac{2\cdot2014^2}{2015\cdot2014}=\dfrac{2\cdot2014}{2015}=...\)