Một người đi xe đạp trên quãng đường AB. 2/7 đoạn đường đầy đi với vận tốc 20km/h,1/7 đoạn đường tiếp xe đi với vận tốc 36km/h,1/7 đoạn đường tiếp theo đi với vận tốc 24km/h,3/7 đoạn đường cuối đi với vận tốc 15km/h. Tính vận tốc trung bình của xe trên cả đoạn đường AB.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=>t1=\dfrac{\dfrac{1}{3}S}{12}=\dfrac{S}{36}\left(h\right)\)
\(=>t2=\dfrac{\dfrac{1}{3}S}{8}=\dfrac{S}{24}\left(h\right)\)
\(=>t3=\dfrac{\dfrac{1}{3}S}{6}=\dfrac{S}{18}\left(h\right)\)
\(=>vtb=\dfrac{S}{t1+t2+t3}=\dfrac{S}{\dfrac{S}{36}+\dfrac{S}{24}+\dfrac{S}{18}}=\dfrac{S}{\dfrac{432S+648S+864S}{15552}}\)
\(=\dfrac{S}{\dfrac{1944S}{15552}}=\dfrac{15552}{1944}=8km/h\)
Ta có: \(v_{tb}=\dfrac{S_1+S_2+S_3}{t_1+t_2+t_3}=\dfrac{S}{\dfrac{S}{36}+\dfrac{S}{42}+\dfrac{S}{30}}=\dfrac{1260}{107}\left(km/h\right)\)
\(v_{tb}=\dfrac{\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}}{\dfrac{\dfrac{1}{3}}{12}+\dfrac{\dfrac{1}{3}}{14}+\dfrac{\dfrac{1}{3}}{10}}=\dfrac{1260}{107}\approx11,776\left(\dfrac{km}{h}\right)\)
Vận tốc trung bình của người đi xe đạp trên đoạn đường AB là :
(14+16+8) : 3 = 12,6666..... (km/giờ) \(\approx\)12,67 (km/giờ)
Vậy vận tốc trung bình của người đi xe đạp trên đoạn đường AB là 12,67 km/giờ
Tóm tắt:
\(s_1=s_2=s_3=\dfrac{1}{3}s_{AB}\)
\(v_1=13km/h\\ v_2=15km/h\\ v_3=17km/h\)
\(-----\\ v_{TB}=?\)
-- giải ---
Gọi độ dài mỗi đoạn đường là s
Ta có
\(v_{TB}=\dfrac{s+s+s}{t_1+t_2+t_3}=\dfrac{s+s+s}{\dfrac{s}{v_1}+\dfrac{s}{v_2}+\dfrac{s}{v_3}}\\ =\dfrac{3s}{s\left(\dfrac{1}{v_1}+\dfrac{1}{v_2}+\dfrac{1}{v_3}\right)}=\dfrac{3}{\dfrac{1}{v_1}+\dfrac{1}{v_2}+\dfrac{1}{v_3}}\)
Mình gợi ý cách làm. Đến đây thì bạn có thể thế số và bấm máy tính là tìm đc vTB rồi nhé!
Thời gian đi 1/3 quãng đường đầu:
t1= \(\dfrac{S}{3v_1}\)
Thời gian đi 1/3 quãng đường giữa:
t2= \(\dfrac{S}{3v_2}\)
Thời gian đi 1/3 quãng đường cuối:
t3= \(\dfrac{S}{3v_3}\)
Vận tốc trung bình trên cả đoạn đường AB là:
vtb= \(\dfrac{S}{t_1+t_2+t_3}\)= \(\dfrac{S}{\dfrac{S}{3v_1}+\dfrac{S}{3v_2}+\dfrac{S}{3v_3}}\)= \(\dfrac{1}{\dfrac{1}{3v_1}+\dfrac{1}{3v_2}+\dfrac{1}{3v_3}}\)
Thay v1, v2 và v3 vào ta được:
vtb= 13,85(km/h)
Thời gian đi trên 1/3 đoạn đường đầu là:
\(t_1=\dfrac{AB}{3v_1}=\dfrac{AB}{3.14}=\dfrac{AB}{42}\left(h\right)\)
Thời gian đi trên 1/3 đoạn đường tiếp theo là:
\(t_2=\dfrac{AB}{3v_2}=\dfrac{AB}{3.16}=\dfrac{AB}{48}\left(h\right)\)
Thời gian đi trên 1/3 đoạn đường cuối cùng là:
\(t_3=\dfrac{AB}{3v_3}=\dfrac{AB}{3.8}=\dfrac{AB}{24}\left(h\right)\)
Vận tốc trung bình trên cả quãng đường là:
\(v_{tb}=\dfrac{AB}{t_1+t_2+t_3}=\dfrac{AB}{\dfrac{AB}{42}+\dfrac{AB}{48}+\dfrac{AB}{24}}=\dfrac{AB}{AB\left(\dfrac{1}{42}+\dfrac{1}{48}+\dfrac{1}{24}\right)}=\dfrac{1}{\dfrac{1}{42}+\dfrac{1}{48}+\dfrac{1}{24}}=\dfrac{336}{29}\left(km/h\right)\)
\(=>Vtb=\dfrac{S}{t1+t2+t3}=\dfrac{S}{\dfrac{\dfrac{1}{3}S}{v1}+\dfrac{\dfrac{1}{3}S}{v2}+\dfrac{\dfrac{1}{3}S}{v3}}\)
\(=>vtb=\dfrac{S}{\dfrac{S}{42}+\dfrac{S}{48}+\dfrac{S}{24}}=\dfrac{S}{\dfrac{S\left(48.24+42.24+48.42\right)}{48384}}=\dfrac{48384}{4176}=11,6km/h\)
Bài làm :
\(\frac{2}{7}\) đoạn đường đầu xe đạp đi với thời gian là :
\(t_1=\frac{\frac{2s}{7}}{20}=\frac{s}{70}\left(h\right)\)
\(\frac{1}{7}\) đoạn đường tiếp xe đi với thời gian :
\(t_2=\frac{\frac{1s}{7}}{36}=\frac{s}{252}\left(h\right)\)
\(\frac{1}{7}\) đoạn đường tiếp theo xe đi với thời gian :
\(t_3=\frac{\frac{1S}{7}}{24}=\frac{s}{168}\left(h\right)\)
\(\frac{3}{7}\) đoạn đường cuối xe đi với thời gian là :
\(t_4=\frac{\frac{3s}{7}}{15}=\frac{s}{35}\left(h\right)\)
Vận tốc trung bình của xe trên cả đoạn đường AB là :
\(v_{tb}=\frac{\frac{2s}{7}+\frac{1s}{7}+\frac{1s}{7}+\frac{3s}{7}}{\frac{s}{70}+\frac{s}{252}+\frac{s}{168}+\frac{s}{35}}=\frac{360}{19}\approx19km/h\)