K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2020

\(\text{a) (x-2)^2.(y-3)^2=-4 =(-2).2=2.(-2)}\)

sau đó tính từng th ra

24 tháng 1 2020

a) \(\left(x-2\right)^2.\left(y-3\right)^2=-4\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-2\right)^2< 0\\\left(y-3\right)^2< 0\end{cases}}\)

Mà \(\left(x-2\right)^2\ge0\)\(\left(y-3\right)^2\ge0\)

\(\Rightarrow\left(x;y\right)\in\varnothing\)

8 tháng 6 2020

nhầm xíu '-'

Giải:

a) \(y^2=3-\left|2x-3\right|\) 

Vì \(-\left|2x-3\right|\le0\forall x\) nên \(3-\left|2x-3\right|\le3\forall x\) nên \(y^2\le3\rightarrow y^2\in\left\{0;1\right\}\) (vì \(y\in Z\) )

TH1:

\(y^2=0\) 

\(\Rightarrow y=0\) 

\(\Rightarrow\left|2x-3\right|=3\) 

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) 

TH2:

\(y^2=1\) 

\(\Rightarrow y=\pm1\)

4:

x+3y=4m+4 và 2x+y=3m+3

=>2x+6y=8m+8 và 2x+y=3m+3

=>5y=5m+5 và x+3y=4m+4

=>y=m+1 và x=4m+4-3m-3=m+1

x+y=4

=>m+1+m+1=4

=>2m+2=4

=>2m=2

=>m=1

3:

x+2y=3m+2 và 2x+y=3m+2

=>2x+4y=6m+4 và 2x+y=3m+2

=>3y=3m+2 và x+2y=3m+2

=>y=m+2/3 và x=3m+2-2m-4/3=m+2/3