Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4:
x+3y=4m+4 và 2x+y=3m+3
=>2x+6y=8m+8 và 2x+y=3m+3
=>5y=5m+5 và x+3y=4m+4
=>y=m+1 và x=4m+4-3m-3=m+1
x+y=4
=>m+1+m+1=4
=>2m+2=4
=>2m=2
=>m=1
3:
x+2y=3m+2 và 2x+y=3m+2
=>2x+4y=6m+4 và 2x+y=3m+2
=>3y=3m+2 và x+2y=3m+2
=>y=m+2/3 và x=3m+2-2m-4/3=m+2/3
\(\left(1\right)\Leftrightarrow\left(x^2-2y\right)\left(x^2+y^2+2\right)=0\)
\(\Leftrightarrow y=\frac{x^2}{2}\)
Thê vô (2) được
\(2x^2+\left(\frac{x^2}{2}\right)^2+x=14\)
\(\Leftrightarrow\left(x-2\right)\left(x^3+2x^2+12x+28\right)=0\)
b/ ĐKXĐ: ...
\(2x^3-2y^3+5x-5y=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x^2+2xy+2y^2\right)+5\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x^2+2xy+2y^2+5\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[\left(x+y\right)^2+x^2+y^2+5\right]=0\)
\(\Leftrightarrow x=y\) (ngoặc sau luôn dương)
Thế vào pt dưới:
\(\frac{3x}{x^2+x+1}+\frac{5x}{x^2+3x+1}=2\)
Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:
\(\frac{3}{x+\frac{1}{x}+1}+\frac{5}{x+\frac{1}{x}+3}=2\)
Đặt \(x+\frac{1}{x}+1=t\)
\(\Rightarrow\frac{3}{t}+\frac{5}{t+2}=2\Leftrightarrow3\left(t+2\right)+5t=2t\left(t+2\right)\)
\(\Leftrightarrow2t^2-4t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}+1=-1\\x+\frac{1}{x}+1=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+1=0\\x^2-2x+1=0\end{matrix}\right.\) \(\Leftrightarrow...\)
a/ ĐKXĐ: ...
\(2x-\frac{1}{y}=2y-\frac{1}{x}\Leftrightarrow\frac{2xy-1}{y}=\frac{2xy-1}{x}\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\2xy-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\xy=\frac{1}{2}\end{matrix}\right.\)
TH1: \(x=y\Rightarrow6x^2=7x^2-8\Rightarrow x^2=8\Rightarrow...\)
TH2: \(xy=\frac{1}{2}\Rightarrow y=\frac{1}{2x}\)
\(\Rightarrow2\left(2x^2+\frac{1}{4x^2}\right)+4\left(x-\frac{1}{2x}\right)=\frac{7}{2}-8\)
\(\Leftrightarrow4\left(x^2+\frac{1}{4x^2}\right)+8\left(x-\frac{1}{2x}\right)+9+4x^2=0\)
Đặt \(x-\frac{1}{2x}=t\Rightarrow x^2+\frac{1}{4x^2}=t^2+1\)
\(\Rightarrow4\left(t^2+1\right)+8t+9+4x^2=0\)
\(\Leftrightarrow4\left(t+1\right)^2+4x^2+9=0\)
Vế trái luôn dương nên pt vô nghiệm