cho S = 1 + 2 + 2 mũ 2 + ......... + 2 mũ 2005
hãy so sánh S với 5 . 2 mũ 2004
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)n+5 chia hết cho n-1
=>n-1+6 chia hết cho n-1
=> 6 chia hết cho n-1 hay n-1EƯ(6)={1;2;3;6}
=>nE{2;3;4;7}
b)3n+1 chia hết cho n+1
3n+3-2 chia hết cho n+1
3(n+1)-2 chia hết cho n+1
=>2 chia hết cho n+1 hay n+1EƯ(2)={1;2}
nE{0;1}
a)S = 1 + 2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29
2S = 2.(1 + 2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29)
2S = 2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29 + 210
S = (2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29 + 210) - (1 + 2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29)
S = 210 - 1
Suy ra: S = \(\frac{2^{9+1}-1}{2-1}\)
S = \(\frac{2^{10}-1}{1}\)
S = 210 - 1
S = 1023
b)Mình không thể giúp bạn vì mình không rõ 5.28 hay (5.2)8
S = 20 + 2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29
2S = 2.( 20 + 2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29)
2S = 2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29 + 210
S = (2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29 + 210) - (20 + 2 + 22 + 23 + 24 +25 +26 +27 + 28 + 29)
S = 210 - 20
ta có: 5 x 28 = ( 4 + 1) x 28 = 4 . 28 + 28 = 22 . 28 + 28 = 210 + 28
vì 210 - 20 < 210 + 28 nên S < 5 x 28
2S=2(1+2+22+...+29)
2S=2+22+...+210
2S-S=(2+22+...+210)-(1+2+22+...+29)
S=210-1=1024-1=1023
5*28=5*256=1280.Vì 1280>1023
=>5*28>210-1 <=> 5*28>S
S=4+42+43+44+...+499
4S=42+43+44+...+499+4100
4S-S=4100-1
3S=4100-1
S=(4100-1):3 < 6.498
vậy S < 6.498
So sánh : và \(72^{44}-72^{43}\)
Ta có :
\(72^{45}-72^{44}=72^{44}\left(72-1\right)\)
\(72^{44}-72^{43}=72^{43}\left(72-1\right)\)
Vì 7244 > 7243 => 7244 (72-1) > 7243 (72-1)
hay 7245 -7244 > 7244 - 7243
\(S=1+2+2^2+...+2^9\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{10}\)
\(\Rightarrow S=2^{10}-1\)
Lại có \(5.2^8=\left(2^2+1\right).2^8=2^{10}+2^8\)
Vậy \(S< 5.2^8\)
Bài giải
\(S=1+2+2^2+...+2^{2005}\)
\(2S=2+2^2+2^3+...+2^{2006}\)
\(2S-S=S=2^{2006}-1=2^{2004}\cdot4-1< 5\cdot2^{2004}\)
\(\Rightarrow\text{ }S< 5\cdot2^{2004}\)
Bài giải
\(S=1+2+2^2+...+2^{2005}\)
\(2S=2+2^2+2^3+...+2^{2006}\)
\(2S-S=S=2^{2006}-1=2^{2004}\cdot4-1< 5\cdot2^{2004}\)
\(\Rightarrow\text{ }S< 5\cdot2^{2004}\)