choABC A=90BH là phân giác B H thuộc AC HEvuông với BC E thuộc BC EHgiao BAở I CM BHvuông IC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác ABO và tam giác AEO có:
Góc AOB = góc AOE (=90 độ)
Góc BAO = góc EAO (AO là phân giác góc BAE)
Cạnh AO chung
=> tam giác ABO = tam giác AEO (g-c-g) (1)
b) Từ (1) => AB = AE => tam giác BAE cân tại A (2)
c) Từ (2) => AO là đường cao cũng là trung tuyến của tam giác BAE
=> AD là đường trung trực của BE
d) Tam giác BAE có hai đường cao AO và BK cắt nhau tại M nên M là trực tâm.
Gọi H là giao điểm của EM và AB => EH đi qua trực tâm M nên là đường cao thứ ba của tam giác BAE
=> EM vuông góc AB
mà BC vuông góc AB (gt)
=> EM // BC
xét ΔABH và ΔMBH có:
\(\widehat{HMB}\)=\(\widehat{HAB}\)=90o
BH là cạnh chung
\(\widehat{MBH}\)=\(\widehat{ABH}\)(BH la phân giác của \(\widehat{MBA}\))
⇒ΔABH=ΔMBH(cạnh huyền góc nhọn)
⇒BM=AB(2 cạnh tương ứng)
⇒ΔABM cân tại B
⇒\(\widehat{ABM}\)=\(\widehat{MAB}\)
gọi I là giao điểm của AM và BH
xét ΔMBI và ΔABI có
AB=BM(ΔABH=ΔMBH)
\(\widehat{MBH}\)=\(\widehat{ABH}\)(BH là phân giác của \(\widehat{MBA}\))
\(\widehat{ABM}\)=\(\widehat{MAB}\)(chứng minh trên)
⇒ΔMBI=ΔABI (g-c-g)
⇒\(\widehat{MIB}\)=\(\widehat{AIB}\)(2 góc tương ứng)(1)
Mà \(\widehat{MIB}\)+\(\widehat{AIB}\)=180o(2 góc kề bù)(2)
Từ (1) và (2) ⇒\(\widehat{MIB}\)=\(\widehat{AIB}\)=\(\dfrac{180^o}{2}\)=90o
⇒BH⊥AM (Điều phải chứng minh)
xét ΔCMH và ΔNAH có:
\(\widehat{CMH}\)=\(\widehat{HAN}\)=90o
\(\widehat{CHM}\)=\(\widehat{NHA}\)(2 góc đối đỉnh)
AH=HM(ΔABH=ΔMBH)
⇒ΔCMH=ΔNAH(g-c-g)
⇒HC=HN(2 cạnh tương ứng)
⇒ΔCHN cân tại H
\(\widehat{NCH}\)=\(\widehat{CNH}\)
vì ΔABH=ΔMBH
⇒AH=HM(2 cạnh tương ứng)
⇒ΔAHM cân tại H
⇒\(\widehat{HMA}\)=\(\widehat{HAM}\)
xét ΔNHC và ΔMHA có
\(\widehat{MHA}\)=\(\widehat{CHN}\)(2 góc đối đỉnh)
⇒\(\widehat{HMA}\)+\(\widehat{HAM}\)=\(\widehat{NCH}\)+\(\widehat{CNH}\)
Mà \(\widehat{HMA}\)=\(\widehat{HAM}\)(chứng minh trên)và\(\widehat{NCH}\)=\(\widehat{CNH}\)(chứng minh trên)
⇒\(\widehat{HMA}\)=\(\widehat{NCH}\)
⇒AM // CN (điều phải chứng minh)
a) Vì trong tam giác cân đường cao đông thời là trung tuyến ;trung trực ,...
Nên AH là đường cao đồng thời là trugn tuyến ứng với canh BC
=>HB=HC
b) Ta có HB+HC=BC
=>HB=HC=BC/2=8/2=4cm
Ap dụng định lí Py-ta-go vào tam giác BAH ta có
AH2+BH2=AB2
AH2=AB2-BH2
AH2= 52-42
AH2=25-16=9
=>AH=3
C)Xét tam giác vuông BDH và CEH ta có
HB=HC(theo câu a)
Góc B=C(Vì tam giác ABC cân ở A)
=>tam giác BDH=CEH(ch-gn)
=>HD=HE(tương ứng)
Vậy tam giác HDE có HD=HE nên cân ở H