K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2022

`a)16x-5x^2-3 <= 0`

`<=>5x^2-16x+3 >= 0`

`<=>5x^2-15x-x+3 >= 0`

`<=>(x-3)(5x-1) >= 0`

`<=>` $\left[\begin{matrix} \begin{cases} x-3 \ge 0<=>x \ge 3\\5x-1 \ge 0<=>x \ge \dfrac{1}{5} \end{cases}\\ \begin{cases} x-3 \le 0<=>x \le 3\\5x-1 \le 0<=>x \le \dfrac{1}{5} \end{cases}\end{matrix}\right.$

`<=>` $\left[\begin{matrix} x \ge 3\\ x \le \dfrac{1}{5}\end{matrix}\right.$

Vậy `S={x|x >= 3\text{ hoặc }x <= 1/5}`

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

`b)[2x+5]/[x-24] > 1`        

`<=>[2x+5]/[x-24]-1 > 0`

`<=>[2x+5-x+24]/[x-24] > 0`

`<=>[x+29]/[x-24] > 0`

`<=>` $\left[\begin{matrix} x < -29 \\ x > 24\end{matrix}\right.$

Vậy `S={x|x > 24\text{ hoặc }x < -29}`

13 tháng 3 2019

từ câu 1 đến câu 4 bạn có thẻ dùng máy tính casio f(x)570 VN giải nhé .bạn bấm MODE xuống 1 1

1)vô nghiệm

2)vô nghiệm

3)luôn đúng

4)\(\frac{-1-\sqrt{41}}{4}\le x\le\frac{-1+\sqrt{41}}{4}\)

13 tháng 3 2019

5) \(\left\{{}\begin{matrix}-2x^2+5x-2\le x-3\\-2x^2+5x-2\ge-x+3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le\frac{2-\sqrt{6}}{2}\\x\ge\frac{2+\sqrt{6}}{2}\end{matrix}\right.\\vonghiem\end{matrix}\right.\) vậy bpt vô nghiệm

21 tháng 5 2018

c) Đặt \(t=\sqrt{\left(x-3\right)\left(8-x\right)}\left(t\ge0\right)=\sqrt{-x^2+11x-24}\Rightarrow t^2-2=-x^2+11x-26\)

\(\left(1\right)\Rightarrow t\ge t^2-2\Leftrightarrow t^2-t-2\le0\Leftrightarrow-1\le t\le2\Rightarrow0\le t\le2\Rightarrow0\le-x^2+11x-24\le4\Leftrightarrow\left\{{}\begin{matrix}3\le x\le8\\\left[{}\begin{matrix}x\le4\\x\ge7\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\le x\le4\\7\le x\le8\end{matrix}\right.\)

Vậy tập nghiệm của bpt là \([3;4]\cup[7;8]\)

30 tháng 7 2021

Câu 2,3,4 nx thôi ạ. Câu 1 có bạn giúp r ạ 

30 tháng 7 2021

1)\(\sqrt{4x^2+12x+9}=2-x\)

\(\Leftrightarrow\sqrt{\left(2x+3\right)^2}=2-x\)

\(\Leftrightarrow\left|2x+3\right|=2-x\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2-x\\2x+3=x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)

\(\)

NV
21 tháng 2 2021

Xét \(x^2-5x+4\le0\Leftrightarrow1\le x\le4\Rightarrow D_1=\left[1;4\right]\)

Xét \(x^2-\left(m^2+3\right)x+2\left(m^2+1\right)\le0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2-m^2-1\right)\le0\)

- Nếu \(\left|m\right|\ge1\Rightarrow D_2=\left[2;m^2+1\right]\)

- Nếu \(\left|m\right|< 1\Rightarrow D_2=\left[m^2+1;2\right]\)

Do \(2\in\left[1;4\right]\), để \(D=D_1\cap D_2\) là 1 đoạn có độ dài bằng 1

\(\Leftrightarrow\left[{}\begin{matrix}m^2+1=1\\m^2+1=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\pm\sqrt{2}\end{matrix}\right.\)

Câu 1:

a) \(x-\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)

\(\Leftrightarrow\dfrac{12x-2\left(5x+2\right)}{12}=\dfrac{3\left(7-3x\right)}{12}\)

\(\Leftrightarrow12x-10x-4=21-9x\)

\(\Leftrightarrow11x=25\)

\(\Leftrightarrow x=\dfrac{25}{11}\)

b) \(\left(3x-1\right)\left(x-3\right)\left(7-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\Leftrightarrow x=\dfrac{1}{3}\\x-3=0\Leftrightarrow x=3\\7-2x=0\Leftrightarrow x=3,5\end{matrix}\right.\)

c) \(\left|3x\right|=4x+8\) (1)

Ta có: \(\left|3x\right|=3x\Leftrightarrow3x\ge0\Leftrightarrow x\ge0\)

\(\left|3x\right|=-3x\Leftrightarrow3x< 0\Leftrightarrow x< 0\)

Với \(x\ge0\), phương trình (1) có dạng:

\(3x=4x+8\Leftrightarrow-x=8\Leftrightarrow x=-8\)

(không thoả mãn điều kiện) \(\rightarrow\) loại

Với \(x< 0\), phương trình (1) có dạng:

\(-3x=4x+8\Leftrightarrow-7x=8\Leftrightarrow x=-\dfrac{8}{7}\)

(thoả mãn điều kiện) \(\rightarrow\) nhận

Vậy phương trình đã cho có 1 nghiệm \(x=-\dfrac{8}{7}\)

Câu 2:

\(2x\left(6x-1\right)\ge\left(3x-2\right)\left(4x+3\right)\)

\(\Leftrightarrow12x^2-2x\ge12x^2+9x-8x-6\)

\(\Leftrightarrow-3x\ge-6\)

\(\Leftrightarrow x\le2\)

Vậy bất phương trình đã cho có nghiệm \(x\le2\)

a: \(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)< 10x\left(2x+3\right)-100\)

\(\Leftrightarrow20x^2-12x+15x-5< 20x^2+30x-100\)

=>3x-5<=30x-100

=>30x-100>3x-5

=>27x>95

hay x>95/27

b: \(\Leftrightarrow4\left(5x-2\right)-6\left(2x^2-x\right)< 4x\left(1-3x\right)-15x\)

\(\Leftrightarrow20x-8-12x^2+6x< 4x-12x^2-15x\)

=>26x-8<-11x

=>37x<8

hay x<8/37