K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2020

\(\frac{x-2012}{2}+\frac{x-2008}{3}+\frac{x-2002}{4}+\frac{x-1994}{5}=10\)

\(\Leftrightarrow\frac{x-2012}{2}-1+\frac{x-2008}{3}-2+\frac{x-2002}{4}-3+\frac{x-1994}{5}-4=0\)

\(\Leftrightarrow\frac{x-2014}{2}+\frac{x-2014}{3}+\frac{x-2014}{4}+\frac{x-2014}{5}=0\)

<=> x = 2014(vì 1/2 + 1/3 + 1/4 + 1/5 khác 0)

12 tháng 2 2018

\(\Leftrightarrow\frac{x-2012}{2}-1+\frac{x-2008}{3}-2+\frac{x-2002}{4}-3+\frac{x-1994}{5}-4=0\)

\(\Leftrightarrow\frac{x-2014}{2}+\frac{x-2014}{3}+\frac{x-2014}{4}+\frac{x-2014}{5}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)=0\)

\(\Leftrightarrow x-2014=0\)

\(\Leftrightarrow x=2014\)

30 tháng 8 2017

minh tinh ra x = -3

viết thế này bố thằng nào hiểu được

2 tháng 10 2016

a)

  • Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-1\right|+\left|x-4\right|\ge\left|x-1+4-x\right|=3\)

\(\Rightarrow B\ge3\)

Dấu = khi \(\left(x-1\right)\left(x-4\right)\ge0\)\(\Rightarrow1\le x\le4\)

Vậy MinB=3 khi \(1\le x\le4\)

  • Áp dụng tiếp Bđt kia ta có:

\(\left|1993-x\right|+\left|1994-x\right|\ge\left|1993-x+x-1994\right|=1\)

\(\Rightarrow C\ge1\)

Dấu = khi \(\left(x-1993\right)\left(x-1994\right)\ge0\)\(\Rightarrow1993\le x\le1994\)

Vậy MinC=1 khi \(1993\le x\le1994\)

  • Ta thấy: \(\begin{cases}x^2\\\left|y-2\right|\end{cases}\ge0\)

\(\Rightarrow x^2+\left|y-2\right|\ge0\)

\(\Rightarrow x^2+\left|y-2\right|-5\ge-5\)

\(\Rightarrow D\ge-5\)

Dấu = khi \(\begin{cases}x=0\\y=2\end{cases}\)

Vậy MinD=-5 khi \(\begin{cases}x=0\\y=2\end{cases}\)

b)Ta thấy:

\(\begin{cases}\left|4x-3\right|\\\left| 5y+7,5\right|\end{cases}\ge0\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

\(\Rightarrow C\ge17,5\)

Dấu = khi \(\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}\)

Vậy MinC=17,5 khi \(\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}\)

c)Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2002\right|+\left|x-2001\right|\ge\left|x-2002+2001-x\right|=1\)

\(\Rightarrow M\ge1\)

Dấu = khi \(\left(x-2002\right)\left(x-2001\right)\ge0\)\(\Rightarrow2001\le x\le2002\)

Vậy MinM=1 khi \(2001\le x\le2002\)

3 tháng 10 2016

Thankshaha

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

13 tháng 6 2019

Không tồn tại X để phương trình trên có nghiệm bạn ơi hay ý bạn là:
 \(\frac{x+4}{2012}\)+\(\frac{x+3}{2013}\)=\(\frac{x+2}{2014}\)+\(\frac{x+1}{2015}\)
Nếu như vậy thì sẽ giải như sau:
 \(\frac{x+4}{2012}\)+\(\frac{x+3}{2013}\)=\(\frac{x+2}{2014}\)+\(\frac{x+1}{2015}\)
<=> \(\frac{x}{2012}\)+\(\frac{4}{2012}\)+\(\frac{x}{2013}\)+\(\frac{3}{2013}\)=\(\frac{x}{2014}\)+\(\frac{2}{2014}\)+\(\frac{x}{2015}\)+\(\frac{1}{2015}\)
<=> \(x\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)\)=\(\frac{1}{2015}+\frac{2}{2014}-\frac{3}{2013}-\frac{4}{2012}\)(Đoạn này chuyển vế đổi dấu mình làm tắt tí nha, viết dài quá mỏi tay)
(Đặt A=2012 B=2013 C=2014 D=2015)
<=>\(x\)\(\frac{ABC+2ABD-3ACD-4BCD}{ABCD}\):\(\frac{BCD+ACD-ABC-ABD}{ABCD}\)
<=>\(x\)\(\frac{AC\left(B-3D\right)+BD\left(2A-4C\right)}{AC\left(D-B\right)+BD\left(C-A\right)}\)
<=>\(x\)\(\frac{-4032\left(AC+BD\right)}{2\left(AC+BD\right)}\)
<=>\(x\)=\(-2016\)
Kết luận: Vậy .....

\(x\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)\)\(x\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}-\frac{1}{2015}\right)\)

\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)

\(\Leftrightarrow\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2010}-1+\dfrac{x-5}{2009}-1+\dfrac{x-6}{2008}-1\)

=>x-2014=0

hay x=2014

8 tháng 2 2021

Ai cíu dới

8 tháng 2 2021

bạn có hướng dẫn rùi thây