( x - 1 ) . ( x ^ 2 - 1 ) = 0
( x - 1 ) ^ 2 = 0
( x - a ) ^ n = 0
giúp mik vs các bn ạ !!!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x-7 = 0
x=0+7=7
b, ( x - 3 ) . ( x^2 + 3 ) = 0
-> x -3=0 hoặc x^2+3 =0
+ Nếu x -3 =0
-> x=3
+ Nếu x^2+3 =0
-> x^2 =-3 ( loại)
Vậy x=3
Bài2
6x + 3 chia hết cho x
Ta có x chia hết cho x
-> 6x chia hết cho x
Mà 6x+3 chia hết cho x
-> (6x+3)-6x chia hết cho x
-> 3 chia hết cho x
......
Bạn tự làm
Câu b tương tự
1.
x - 7 = 0 => x = 7
( x - 3 ) ( x2 + 3 ) = 0
=> \(\orbr{\begin{cases}x-3=0\\x^2+3=0\end{cases}}\)=> \(\orbr{\begin{cases}x=3\\x^2=-3\end{cases}}\)
Bình phương một số \(\ge\)0 => x2 \(\ne\)-3
=> x = 3
2. a) 6x + 3 chia hết cho x
=> 3 chia hết cho x
=> x thuộc Ư(3) = { -3 ; -1 ; 1 ; 3 }
b) 4x + 4 chia hết cho 2x - 1
=> 2(2x - 1) + 6 chia hết cho 2x - 1
=> 4x - 2 + 6 chia hết cho 2x - 1
=> 6 chia hết cho 2x - 1
=> 2x - 1 thuộc Ư(6) = { -6 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 6 }
2x-1 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
x | -2,5 | -1 | -0,5 | 0 | 1 | 1,5 | 2 | 3,5 |
Vì x thuộc Z => x thuộc { -1 ; 0 ; 1 ; 2 }
a: (x+2)(x-3)>0
nên x+2;x-3 cùng dấu
=>x>3 hoặc x<-2
b: (x-1)(x+4)<=0
nên x-1 và x+4 khác dấu
=>-4<=x<=1
a: f(-2)=4+3=7
f(-1)=2+3=5
f(0)=3
f(1/2)=-1+3=2
f(-1/2)=1+3=4
b: g(-1)=1-1=0
f(0)=0-1=-1
a) Ta có: \(\left(x-3\right)=\left(3-x\right)^2\)
\(\Leftrightarrow\left(x-3\right)^2-\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
b) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=\dfrac{1}{64}\)
\(\Leftrightarrow x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3=\dfrac{1}{64}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{1}{4}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)
hay \(x=-\dfrac{1}{4}\)
c) Ta có: \(8x^3-50x=0\)
\(\Leftrightarrow2x\left(4x^2-25\right)=0\)
\(\Leftrightarrow x\left(2x-5\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
e) Ta có: \(x\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
f) Ta có: \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-3\end{matrix}\right.\)
a. Ta có: \(x^2-10x+26+y^2+2y=0\Leftrightarrow\left(x^2-10x+25\right)+\left(y^2+2y+1\right)=0\\ \)
\(\Leftrightarrow\left(x+5\right)^2+\left(y+1\right)^2=0\Rightarrow\hept{\begin{cases}x+5=0\\y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}}\)
b. \(\left(2x+5\right)^2-\left(x-7\right)^2=0\Leftrightarrow\left(2x+5+x-7\right).\left(2x+5-x+7\right)=0\)
\(\Leftrightarrow\left(3x-2\right).\left(x+12\right)=0\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-12\end{cases}}}\)
c. \(25.\left(x-3\right)^2=49.\left(1-2x\right)^2\Leftrightarrow\left(5x-15\right)^2=\left(7-14x\right)^2\Leftrightarrow\left(5x-15\right)^2-\left(7-14x\right)^2=0\)
\(\Leftrightarrow\left(5x-15-7+14x\right).\left(5x-15+7-14x\right)=0\Leftrightarrow\left(19x-22\right).\left(-9x-8\right)=0\)
\(\Leftrightarrow\left(19x-22\right).\left(9x+8\right)=0\Leftrightarrow\orbr{\begin{cases}19x-22=0\\9x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{22}{19}\\x=-\frac{8}{9}\end{cases}}}\)
d. \(\left(x+2\right)^2=\left(3x-5\right)^2\Leftrightarrow\left(x+2\right)^2-\left(3x-5\right)^2=0\Leftrightarrow\left(x+2+3x-5\right).\left(x+3-3x+5\right)=0\)
\(\Leftrightarrow\left(4x-3\right).\left(8-2x\right)=0\Leftrightarrow\orbr{\begin{cases}4x-3=0\\8-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=4\end{cases}}}\)
e. \(x^2-2x+1=16\Leftrightarrow\left(x-1\right)^2-16=0\Leftrightarrow\left(x-1-4\right).\left(x-1+4\right)=0\)
\(\Leftrightarrow\left(x-5\right).\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x-5=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)
a. \(x^2-25-3.\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+5\right)-3.\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+5-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
b. \(\left(3x+1\right)^2=\left(2x-5\right)\\ \Leftrightarrow9x^2+6x+1=2x-5\\ \Leftrightarrow9x^2+6x-2x=-5-1\\ \Leftrightarrow9x^2+4x=-6\\ \Leftrightarrow x\left(9x+4\right)=-6\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\\9x+4=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=-\dfrac{10}{9}\end{matrix}\right.\)
c. \(2x^2-7x+6=0\\ \Leftrightarrow2x^2-7x=-6\\ \Leftrightarrow x\left(2x-7\right)=-6\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\\x=\dfrac{1}{2}\end{matrix}\right.\)
a, \(\left(x-5\right)\left(x+5\right)-3\left(x-5\right)=0\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\Leftrightarrow x=-2;x=5\)
b, bạn ktra lại đề, thường thường ngta hay cho 2 vế cùng bình phương
c, \(2x^2-7x+6=0\Leftrightarrow\left(2x-3\right)\left(x-2\right)=0\Leftrightarrow x=\dfrac{3}{2};x=2\)
\(a,4x\left(x+1\right)=8\left(x+1\right)\)
\(\Leftrightarrow4x^2+4x-8x-8=0\)
\(\Leftrightarrow4x^2-4x-8=0\)
\(\Leftrightarrow4\left(x^2-x-2\right)=0\)
\(\text{⇔}4\left(x^2-2x+x-2\right)=0\)
\(\text{⇔}4\left(x-2\right)\left(x+1\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
\(c,2x\left(x-2\right)-\left(2-x\right)^2=0\)
\(\text{⇔}2x\left(x-2\right)-\left(x-2\right)^2=0\)
\(\text{⇔}\left(x-2\right)\left(2x-x+2\right)=0\)
\(\text{⇔}\left(x-2\right)\left(x+2\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(d,\left(x-3\right)^3+\left(3-x\right)=0\)
\(\text{⇔}\left(x-3\right)^3-\left(x-3\right)=0\)
\(\text{⇔}\left(x-3\right)\left(x^2-6x+9-1\right)=0\)
\(\text{⇔}\left(x-3\right)\left(x^2-6x+8\right)=0\)
\(\text{⇔}\left(x-3\right)\left(x-2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=4\end{matrix}\right.\)
\(g,5x\left(x-2000\right)-x+2000=0\)
\(\text{⇔}\left(x-2000\right)\left(5x-1\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x=2000\\x=\frac{1}{5}\end{matrix}\right.\)
\(n,\left(x+1\right)^2-1+x=0\)
\(\text{⇔}x^2+2x+1-1+x=0\)
\(\text{⇔}x^2+3x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
\(k,\left(1-x\right)^2-1+x=0\)
\(\text{⇔}\left(1-x\right)^2-\left(1-x\right)=0\)
\(\text{⇔}\left(1-x\right)\left(1-x-1\right)=0\)
\(\text{⇔}\left(1-x\right).\left(-x\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
\(m,x+6x^2=0\)
\(\text{⇔}x\left(1+6x\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x=0\\x=-\frac{1}{6}\end{matrix}\right.\)
\(h,x^2-4x=0\)
\(\text{⇔}x\left(x-4\right)=0\)
\(\text{⇔}\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
(x-1)2=0
x-1=0
x=0+1
x=1
vậy x=1