K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt S=22020-22019-22018-....-2-1

    2S=2.(22020-22019-22018-....-2-1)

   2S=22021-22020-22019-.........-22-2

  2S+S=(22021-22020-22019-.........-22-2)+(22020-22019-22018-....-2-1)

  3S=22021+1

  S=\(\frac{2^{2021}+1}{3}\)

Chúc bn học tốt

17 tháng 1 2020

thank Nguyễn Trí Nghĩa nhiều nha!

21 tháng 9 2023

\(A=1+2+2^2+...+2^{2018}\)

\(2A=2+2^3+2^4+...+2^{2019}\)

\(A=2A-A=1-2^{2019}\)

\(B-A=2^{2019}-\left(1-2^{2019}\right)\)

\(B-A=2^{2019}-1+2^{2019}\)

\(B-A=1\)

`#3107`

\(A=1+2+2^2+2^3+...+2^{2018}\) và \(B=2^{2019}\)

Ta có:

\(A=1+2+2^2+2^3+...+2^{2018}\)

\(2A=2+2^2+2^3+...+2^{2019}\)

\(2A-A=\left(2+2^2+2^3+...+2^{2019}\right)-\left(1+2+2^2+2^3+...+2^{2018}\right)\)

\(A=2+2^2+2^3+...+2^{2019}-1-2-2^2-2^3-...-2^{2018}\)

\(A=2^{2019}-1\)

Vậy, \(A=2^{2019}-1\)

Ta có:

\(B-A=2^{2019}-2^{2019}+1=1\)

Vậy, `B - A = 1.`

19 tháng 12 2021

\(M=2^{2020}-2^{2020}+1=1\)

19 tháng 12 2021

\(M=2^{2020}-2^{2020}+1=1\)

19 tháng 12 2021

GHI RÕ CÁCH LÀM LUÔN ĐC KO Ạ

5 tháng 8 2023

\(2VT=2^{x+1}+2^{x+2}+2^{x+3}+...+...+2^{x+2016}\)

\(VT=2VT-VT=2^{x+2016}-2^x=2^{2016}.2^x+2^x=2^x\left(2^{2016}+1\right)\)

\(VP=2^{2019}-2^3=2^3\left(2^{2016}-1\right)\)

\(\Rightarrow2^2\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)

\(\Rightarrow2^x=2^3\Rightarrow x=3\)

5 tháng 8 2023

\(2^x+2^{x+1}+2^{x+2}+2^{x+2015}=2^{2019}-8\left(1\right)\)

Đặt \(S=2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)

\(\Rightarrow S+\left(1+2^2+...2^{x-1}\right)=\left(1+2^2+...2^{x-1}\right)+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)

\(\Rightarrow S+\dfrac{2^{x-1+1}-1}{2-1}=1+2^2+...2^{x-1}+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)

\(\Rightarrow S+2^x-1=\dfrac{2^{x+2015+1}-1}{2-1}\)

\(\Rightarrow S+2^x-1=2^{x+2016}-1\)

\(\Rightarrow S=2^{x+2016}-2^x\)

\(\left(1\right)\Rightarrow2^{x+2016}-2^x=2^{2019}-8=2^{2019}-2^3\)

\(\Rightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)

\(\Rightarrow2^x=2^3\Rightarrow x=3\)

21 tháng 12 2023

 => 2A =2 + 22 + 23 + ... + 22020

 => 2A-A =( 2 + 22 + 23 + ... + 22020)- (1 + 2 + 22 + 23 + ... + 22019)

=> A =22020-1

=> A+1 =22020

Vậy A + 1 là một số chính phương

5 tháng 1 2018

a,(2x+1)(y-3)=12

⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}

2x+11-12-23-3
y-312-126-64-4
x0-11212−32−321-2
y15-9937-1

=>x=0,y=15

 

c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)

\(25^{36}=\left(5^2\right)^{36}=5^{72}\)

Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)

mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)

nên \(6^{50}< 5^{70}\)

mà \(5^{70}< 5^{72}\)

nên \(6^{50}< 5^{72}\)

hay \(36^{25}< 25^{36}\)

AH
Akai Haruma
Giáo viên
28 tháng 1 2024

a/

Với $x,y$ là số tự nhiên $2x+1, y-3$ là số nguyên. Mà $(2x+1)(y-3)=12$ nên $2x+1$ là ước của 12. 

$2x+1>0, 2x+1$ lẻ nên $2x+1\in \left\{1;3\right\}$

Nếu $2x+1=1\Rightarrow y-3=12$

$\Rightarrow x=0; y=15$

Nếu $2x+1=3\Rightarrow y-3=4$

$\Rightarrow x=1; y=7$ 

Vậy...........

AH
Akai Haruma
Giáo viên
28 tháng 1 2024

b/

$2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8$

$2^x(1+2+2^2+2^3+...+2^{2015})=2^{2019}-8(1)$
$2^x(2+2^2+2^3+2^4+...+2^{2016})=2^{2020}-16(2)$ (nhân 2 vế với 2)

Lấy (2) trừ (1) theo vế thì:

$2^x(2^{2016}-1)=2^{2020}-2^{2019}-8$

$2^x(2^{2016}-1)=2^{2019}(2-1)-8=2^{2019}-8$

$2^x(2^{2016}-1)=2^3(2^{2016}-1)$

$\Rightarrow 2^x=2^3$

$\Rightarrow x=3$

21 tháng 11 2023

2^2018-2017=2^2=4

21 tháng 11 2023

22018 - 22017 = 22018-2017= 21 =2