K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2020

Giả sử tồn tại các số nguyên x,y thảo mãn \(x^4+y^3+4=0\) \(\left(1\right)\)

Ta có: \(\left(1\right)\) \(\Leftrightarrow\left(x^2-2x+2\right)\left(x^2+2x+2\right)=-y^3\)

Trước tiên ta nhận xét rằng x phải là một số lẻ, bởi ngược lại nếu x là một số chẵn thì \(x^4+4=-y^3\) là lập phương của một số chẵn, nhưng \(x^4+4\) không chia hết cho 8 với mọi số nguyên x ( vô lí ).

Vậy x là một số lẻ, suy ra y cũng là một số lẻ.

Đặt \(d=\left(x^2-2x+2,x^2+2x+2\right)\)

Ta có: \(4x=\left[\left(x^2+2x+2\right)-\left(x^2-2x+2\right)\right]⋮d\)

Mặt khác d là số lẻ ( vì \(-y^3⋮d\)  và y là số lẻ ), dẫn đến \(\left(4,d\right)=1\) và do đó \(x⋮d\)

Suy ra \(2⋮d\) nên \(d=1\) ( vì d lẻ )

Tóm lại, hai số nguyên \(x^2-2x+2\) và \(x^2+2x+2\) là hai số nguyên tố cùng nhau, có tích là lập phương của một số nguyên nên mỗi số là lập phương của một số nguyên.

Đặt:

\(x^2-2x+2=a^3,x^2+2x+2=b^3\) với \(a,b\inℤ\)

Suy ra \(\left(x-1\right)^2=\left(a-1\right)\left(a^2+a+1\right)\)

\(\left(x+1\right)^2=b^3-1=\left(b-1\right)\left(b^2+b+1\right)\)

Do đó: \(a-1\ge0,b-1\ge0\)

Gọi \(d_1\) là ước chung lớn nhất của \(a-1\) và \(a^2+a=1\) thì \(3a=\left[\left(a^2+a+1\right)-\left(a-1\right)^2\right]⋮d_1\)

Mà \(\left(a,d_1\right)=1\) ( vì \(d_1\) là ước của \(a-1\) ) nên \(3⋮d_1\) )

Do đó: \(d_1\in\left\{1;3\right\}\)

Tương tự gọi \(d_2\) là ước chung lớn nhất của \(b-1\) và \(b^2+b+1\) thì \(d_2\in\left\{1;3\right\}\)

Chú ý rằng nếu \(d_1=d_2=3\) thì \(\left(x-1\right)^2\) và \(\left(x+1\right)^2\) đều chia hết cho 3

Suy ra \(2=\left(x+1\right)-\left(x-1\right)\) chia hết cho 3 ( vô lí )

Vì vậy trong hai số \(d_1,d_2\) phải có một số bằng 1

+ Nếu \(d_1=1\) thì khi đó \(a-1\) và \(a^2+a+1\) là hai số nguyên tố cùng nhau có tích là một số chính phương nên cả 2 số đó đồng thời là số chính phương.

Đặt \(a^2+a+1=m^2\) thì

\(4m^2=4\left(a^2+a=1\right)=\left(2a+1\right)^2+3\)

Do đó \(\left(2m-2a-1\right)\left(2m+2a+1\right)=3\)

TH1: \(2m-2a-1=1,2m+2a+1=3\) thì \(a=0\) ( vô lí vì phương trình \(x^2-2x+2\) không cs nghiệm nguyên )

TH2: \(2m-2a-1=3,2m+2a+1=1\) thì \(a=-1\) ( vô lí vì phương trình \(x^2-2x+2=-1\)  không cs nghiệm nguyên )

+ Nếu \(d_2=1\) làm tương tự ta không tìm đc x,y thỏa mãn.

Vậy không tồn tại các số nguyên x,y thỏa mãn đề bài.

NV
2 tháng 9

Giả sử tồn tại các số tự nhiên x,y,z thỏa mãn đề bài.

Ta có tính chất sau: với các số nguyên a,b,c bất kì, thì hai tổng a+b+c và |a|+|b|+|c| luôn có cùng tính chẵn lẻ.

Do đó, \(\left|x-3y\right|+\left|y-5z\right|+\left|z-7x\right|\) luôn có cùng tính chẵn lẻ với \(x-3y+y-5z+z-7x\)

\(x-3y+y-5z+z-7x=-6x-2y-4z=2.\left(-3x-y-2z\right)\) luôn chẵn với mọi số tự nhiên x,y,z

=>\(\) \(\left|x-3y\right|+\left|y-5z\right|+\left|z-7x\right|\) luôn chẵn

Theo giả thiết:

\(\left|x-3y\right|+\left|y-5z\right|+\left|z-7x\right|=9^{x}+11^{y}+13^{z}\)

Do vế trái chẵn theo chứng minh trên, ta suy ra \(9^{x}+11^{y}+13^{z}\) cũng là số chẵn (1).

Mà 9, 11, 13 là các số tự nhiên lẻ, nên \(9^{x};11^{y};13^{z}\) cũng là các số tự nhiên lẻ

=>\(9^{x}+11^{y}+13^{z}\) có kết quả là 1 số lẻ (mâu thuẫn với (1))

Vậy điều giả sử là sai, hay ko tồn tại các số tự nhiên x,y,z thỏa mãn yêu cầu

3 tháng 9

Đề bài:
Tồn tại hay không các số tự nhiên \(x , y , z\) sao cho

\(\mid x - 3 y \mid + \mid y - 5 z \mid + \mid z - 7 x \mid = 9^{x} + 11^{y} + 13^{z}\)


Phân tích:

  • \(x , y , z \in \mathbb{N}\) (số tự nhiên, tức là \(0 , 1 , 2 , 3 , \ldots\)).
  • Vế trái là tổng các giá trị tuyệt đối, mỗi giá trị tuyệt đối có giá trị không âm và tương đối nhỏ nếu \(x , y , z\) nhỏ.
  • Vế phải là tổng các số mũ với cơ số lớn (9, 11, 13) và lũy thừa theo \(x , y , z\), sẽ tăng rất nhanh khi \(x , y , z\)tăng.

Bước 1: So sánh quy mô 2 vế

  • Vế trái:

\(\mid x - 3 y \mid + \mid y - 5 z \mid + \mid z - 7 x \mid \leq \mid x \mid + 3 \mid y \mid + \mid y \mid + 5 \mid z \mid + \mid z \mid + 7 \mid x \mid = 8 \mid x \mid + 4 \mid y \mid + 6 \mid z \mid\)

Tức là vế trái lớn nhất cũng chỉ là một số bậc nhất theo \(x , y , z\).

  • Vế phải:

\(9^{x} + 11^{y} + 13^{z}\)

Là hàm số mũ tăng cực nhanh khi \(x , y , z\) tăng.


Bước 2: Kiểm tra trường hợp nhỏ

Thử với \(x = y = z = 0\):

\(\mid 0 - 0 \mid + \mid 0 - 0 \mid + \mid 0 - 0 \mid = 0\)\(9^{0} + 11^{0} + 13^{0} = 1 + 1 + 1 = 3\)

Không thỏa.

Thử \(x = y = z = 1\):

\(\mid 1 - 3 \mid + \mid 1 - 5 \mid + \mid 1 - 7 \mid = 2 + 4 + 6 = 12\)\(9^{1} + 11^{1} + 13^{1} = 9 + 11 + 13 = 33\)

Không thỏa.

Thử \(x = y = z = 2\):

Vế trái:

\(\mid 2 - 6 \mid + \mid 2 - 10 \mid + \mid 2 - 14 \mid = 4 + 8 + 12 = 24\)

Vế phải:

\(9^{2} + 11^{2} + 13^{2} = 81 + 121 + 169 = 371\)

Không thỏa.


Bước 3: Nhận xét

  • Vế phải tăng nhanh hơn vế trái rất nhiều.
  • Vì vế trái là hàm tuyến tính (hoặc độ lớn nhất bậc 1), còn vế phải là hàm mũ, nên với \(x , y , z\) lớn, vế phải rất lớn và vế trái rất nhỏ so với vế phải.

Bước 4: Trường hợp vế phải nhỏ nhất

Để vế phải nhỏ nhất, cần \(x = y = z = 0\) (hoặc giá trị nhỏ nhất). Với các giá trị nhỏ đã thử thì không thỏa.


Kết luận:

Không tồn tại các số tự nhiên \(x , y , z\) để

\(\mid x - 3 y \mid + \mid y - 5 z \mid + \mid z - 7 x \mid = 9^{x} + 11^{y} + 13^{z}\)

7 tháng 6 2016

xét ddoomhf dư

20 tháng 8 2017

 Ta có: 1975^430 có chữ tận cùng bằng 5; suy ra 1975^430+2004 có chữ số tận cùng bằng 9. 
Mặt khác: 1980*z tận cùng bằng 0với mọi z . Giả sử tồn tại các số tự nhiên x;y;z thỏa mãn biểu thức đã cho thì 19^x+5^y phải có chữ số tận cùng bằng 9 (1) 
Số 19^x chỉ tận cùng bằng 1 hoặc 9 với mọi x; 5^y có chữ số tận cùng bằng 1(y=0) hoặc 5 
Nếu 19^x tận cùng bằng 1 thì theo (1) 5^y tận cùng bằng 8 ( vô lý) 
Nếu 19^x tận cùng bằng 9 thì theo (1) 5^y tận cùng bằng 0 ( vô lý) 
Vậy không tồn tai các số tự nhiên x;y;z để 19^x+5^y+1980*z= 1975^430+2004

cách 2

thành 1980 * z, và xét cả th số tự nhiên là 0), không biết bạn có sửa lại không 
Tôi chẳng đăng ký bản quyền làm gì nhưng làm thế là rất xấu 
--------------- 
Với tôi số tự nhiên là > 0. Nếu bạn có cả số 0 thì cũng được 
19^x + 5^y + 1980 * z= 1975^430 + 2004 ♦ 
--- 
19^x chỉ tận cùng là 1 hoặc 9: 9^0 = 1, 9*9 = 8(1), 1*9 = 9 
5^y chỉ tận cùng là 1 hoặc 5: 5^0 = 1, 5^n tận cùng là 5 với n ≥ 1 
=> VT chỉ tận cùng là 0, 2, 4 hoặc 6 
tương tự có VP tận cùng là 9 
=> không tồn tại x, y, z sao cho tm ♦ 
---------- 
Nếu đề bài là + 1980^z thì VT chỉ tận cùng là 0, 1, 2, 3, 4, 5, 6, 7 và ta cũng có kết luận tương tự

21 tháng 9 2017

do đề ra cm .... nên chắc chắc điều đó đúng ok