K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2017

\(x^2-4xy+5y^2=169\)

\(x^2-4xy+4y^2+y^2-169=0\)

\(\left(x^2-4xy+4y^2\right)+\left(y^2-13^2\right)=0\)

\(\left(x-2y\right)^2+\left(y-13\right)\left(y+13\right)=0\)

30 tháng 9 2017

b/    \(\Leftrightarrow x^2-4xy+4y^2+y^2=13^2\)

        \(\Leftrightarrow\left(x-2y\right)^2=\left(13^2-y^2\right)\)

        \(\Rightarrow y^2\le13^2\)và    \(13^2-y^2\)là số chính phương .  Do đó :

      \(y^2=0\)hay  \(y=0\)

     Thay vào ta có các nghiệm sau   \(\left(13,0\right);\left(-13;0\right)\)

  

9 tháng 5 2016

ta thấy 5y2 có tận cùng = 0 hoặc 5 

nên 6x2 = 74 - 5y2

\(\Rightarrow\) 6x2 có tận cùng = 4 hoặc 9 

ta lại có 6x2 có tận cùng = 4 \(\Rightarrow\)5ycó tận cùng bằng 0

xét 5y2=20\(\Rightarrow\)y2=4\(\Rightarrow\)y= 2 hoặc -2

6x2= 74-20=54\(\Rightarrow\)x2= 9\(\Rightarrow\)x= 3 hoặc -3

vậy các số nguyên x, y thỏa mãn là x=(3;-3) y=(2;-2)

24 tháng 12 2021

6x^2 - 5y^2 = 74

<=> 6(x^2 - 4) = 5(10 - y^2)

--> 6(x^2 - 4) chia hết cho 5. Mà ƯCLN(6; 5) = 1

--> x^2 - 4 chia hết cho 5

Đặt x^2 = 5k + 4 (k tự nhiên)

--> y^2 = 10 - 6k

Do x^2, y^2 > 0 nên 5k + 4, 10 - 6k > 0 --> -4/5 < k < 5/3

--> k = 0 hoặc k = 1

TH1: k = 0 --> y = sqrt(10) (loại)

TH2: k = 1

--> (x; y) = (-3; -2); (3; 2) (thỏa)

6x^2 +5y^2 =74

(1) 6x2≥0 ⇒ 5y2≤74 ⇔

 y2≤745<15 ⇔ y2≤14

⇒y ={±3;±2;±1;0} 6x2≥0 ⇒5y2 ≤74⇔ y2≤745<15⇔ y2≤14 ⇒y={±3;±2;±1;0}

(2)x;y thuộc Z => 6x^2 luôn là số chẵn => y phải chẵn

(3) 6x^2 luôn chia hết cho 3 (74=7+4=11) không chia hết cho 3

=> y không chia hết cho 3

từ (1) (2) và (3) => y=±2y=±2

⇔6x2=74−5.4=54⇔x2=9;x=±3⇔6x2=74−5.4=54⇔x2=9;x=±3

(x;y)=(±3;±2)

7 tháng 3 2022

Ta có: \(6x^2+5y^2=74>6x^2\Leftrightarrow x^2< \dfrac{37}{3}\Leftrightarrow x^2\in\left\{0,1,4,9\right\}\)

\(x^2=0\Rightarrow x=0\) thay x=0 pt ta có:

\(6x^2+5y^2=74\\ \Leftrightarrow6.0^2+5y^2=74\\ \Leftrightarrow5y^2=74\\ \Leftrightarrow y^2=\dfrac{74}{5}\left(ktm\right)\)

\(x^2=1\Leftrightarrow x=\pm1\) thay x=\(\pm1\) pt ta có:

\(6x^2+5y^2=74\\ \Leftrightarrow6.\left(\pm1\right)^2+5y^2=74\\ \Leftrightarrow6+5y^2=74\\ \Leftrightarrow y^2=\dfrac{68}{5}\left(ktm\right)\)

\(x^2=4\Leftrightarrow x=\pm2\) thay x=\(\pm2\) pt ta có:

\(6x^2+5y^2=74\\ \Leftrightarrow6.\left(\pm2\right)^2+5y^2=74\\ \Leftrightarrow6.4+5y^2=74\\ \Leftrightarrow24+5y^2=74\\ \Leftrightarrow y^2=10\left(ktm\right)\)

\(x^2=9\Leftrightarrow x=\pm3\) thay x=\(\pm3\) vào pt ta có:

\(6x^2+5y^2=74\\ \Leftrightarrow6.\left(\pm3\right)^2+5y^2=74\\ \Leftrightarrow6.9+5y^2=74\\ \Leftrightarrow54+5y^2=74\\ \Leftrightarrow y^2=4\\ \Leftrightarrow y=\pm2\)

Vậy \(\left(x,y\right)\in\left\{\left(-3;-2\right);\left(-3;2\right);\left(3;-2\right);\left(3;2\right)\right\}\)

 

8 tháng 3 2022

Ta có: 

\(6\left(x^2-4\right)=5\left(10-y^2\right)\left(1\right)\)

\(\Rightarrow6\left(x^2-4\right)⋮5\Leftrightarrow\left(6;5\right)=1\)

\(\Rightarrow x^2-4⋮5\Leftrightarrow x^2=5k+4\left(k\inℕ\right)\)

Đặt \(\left(1\right)=x^2-4=5k\)ta lại có:

\(\Rightarrow y^2=10-6k\)

Mà \(\hept{\begin{cases}x^2>0\\y^2>0\end{cases}}\Rightarrow\hept{\begin{cases}5k+4>0\\10-6k>0\end{cases}}\)

\(\Rightarrow-\frac{4}{5}< k< \frac{5}{3}\Leftrightarrow\orbr{\begin{cases}k=0\left(loại\right)\\k=1\end{cases}}\)

\(k=1\Leftrightarrow\hept{\begin{cases}x^2=9\\y^2=4\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm3\\y=\pm2\end{cases}}\)

Vậy cặp \(\left(x,y\right)\in\left\{\left(-3;-2\right);\left(3;2\right)\right\}\)

4 tháng 11 2023

loading...

6 tháng 11 2023

bơ phẹt 

eoeo

8 tháng 4 2017

vì 6x2 và 74 \(⋮2\)

=> 5y2 \(⋮2\)

=> y2 \(⋮2\)( vì (5,2) = 1 )

=> y = 2 ( vì 2 là số nguyên tố chẵn duy nhất )

thay y = 2 vào bài ta được:

6x2 + 5.4 = 74

6x2 = 54

x2 = 9 

=> x = 3

vậy x = 3 và y = 2

8 tháng 4 2017

 6x2 + 5y2 = 74 (1) 
Ta có : 5x2 + 5y2 =< 6x2 + 5y2 =< 6x2 + 6y2
<=> 5(x2 + y2) =< 74 =< 6(x2 + y2
<=> 12,3 =< x2 + y2 =< 14,8 
<=> 13 =< x2 + y2 =< 14 (vì x, y tự nhiên => x2 + y2 tự nhiên) 
Trường hợp 1 : x2 + y2 = 13 (2) 
Ta có hệ : 
6x2 + 5y2 = 74 (1) 
x2 + y2 = 13 (2) 
<=> 6x2 + 5y2 = 74 
5x2 + 5y2 = 65 
Trừ 2 phương trình : x2 = 9 <=> x = 3 (vì x >= 0) 
Thay vào (2) y2 = 13 - x2 = 13 - 9 = 4 <=> x = 2 
Nghiệm : (x ; y) = (2 ; 3) 
Trường hợp 2 : x2 + y2 = 14 (4) 
Ta có hệ : 
6x2 + 5y2 = 74 (1) 
x2 + y2 = 14 (3) 
<=> 6x2 + 5y2 = 74 
5x2 + 5y2 = 70 
Trừ 2 phương trình : x2 = 4 <=> x = 2 
Thay vào (3) : y2 = 14 - 4 = 10 <=> y = \(\sqrt{10}\) (loại) 
Vậy phương trình có nghiệm nguyên duy nhất là (x ; y) = (2 ; 3) .