cho hình thang abcd, 2 đường chéo ac và bd cắt nhau tại o . hãy so sánh:
a.diện tích 2 hình tam giác adc và bdc
b.diện tích 2 hình tam giác adb và acb
c.diện tích 2 hình tam giác aod và boc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải dài lắm xin lỗi bạn nha. Nếu được thì cho mình địa chỉ mail nhé. Mình gửi lời giải cho
bạn vẽ hình ra rồi nhìn vào đoạn thẳng để so sánh.
Cố lên nha!
Gọi d(A;a) là khoảng cách từ điểm A đến đường thẳng a.
2S(AOB) =OB.d(A;OB) =8
2S(BOC) =OB.d(C;OB) =16
=> d(A;OB)/d(C;OB) =1/2
=> OD.d(A;OB)/[OD.d(C;OB)] =1/2
=> 2S(AOD)/(2S(COD)) =1/2
=> S(COD) =2S(AOD) =2S(BOC) =2.8 =16
=> S(ABCD) =4 +8 +8 +16 =36 (cm2)
Vì AB//CD
nên \(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
Ta có: \(\dfrac{S_{BOA}}{S_{BOC}}=\dfrac{OA}{OC}\)
\(\dfrac{S_{BOA}}{S_{AOD}}=\dfrac{OB}{OD}\)
mà \(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
nên \(S_{BOC}=S_{AOD}\)
\(ABssCD\Rightarrow\dfrac{AB}{CD}=\dfrac{OB}{OD}=\dfrac{OA}{OC}=\dfrac{2}{3}\)
a)\(S_{AOD}=\dfrac{1}{2}OA.OD.sinAOB\)
\(S_{BOC}=\dfrac{1}{2}OB.OC.sinBOC\)
\(\Rightarrow\dfrac{S_{AOD}}{S_{BOC}}=\dfrac{OA.OD}{OB.OC}\) vì \(\widehat{AOD}=\widehat{BOC}\Rightarrow sinAOD=sinBOC\)
\(\Leftrightarrow\dfrac{S_{AOD}}{S_{BOC}}=\dfrac{2}{3}.\dfrac{3}{2}=1\)
b) vì \(ABssCD\Rightarrow\dfrac{OH}{OK}=\dfrac{2}{3}\Rightarrow\dfrac{OH}{HK}=\dfrac{2}{5}\)
\(S_{AOB}=\dfrac{1}{2}.OH.AB\\ S_{ABCD}=\dfrac{1}{2}\left(AB+CD\right).HK=\dfrac{1}{2}\left(AB+\dfrac{3}{2}AB\right).HK=\dfrac{1}{2}.\dfrac{5}{2}AB.HK\)
\(\Rightarrow\dfrac{S_{AOB}}{S_{ABCD}}=\dfrac{\dfrac{1}{2}OH.AB}{\dfrac{1}{2}HK.\dfrac{5}{2}AB}=\dfrac{2}{5}.\dfrac{1}{\dfrac{5}{2}}=\dfrac{4}{25}\)
\(\Rightarrow S_{ABCD}=\dfrac{4}{\dfrac{4}{25}}=25\)