cho tam giac ABC can tai A. Qua B va C lan luot ke BH, CK vuong goc voi AC, AB tai H va K. Hai duong thang nay cat nhau tai I. CMR: AI la tia phan giac goc A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vẽ:
Giải:
a/ Xét \(\Delta ACI\) và \(\Delta BCI\) có:
AI: chung
\(\widehat{ACI}=\widehat{BCI}\left(gt\right)\)
AC = BC (gt)
=> \(\Delta ACI=\Delta BCI\left(c-g-c\right)\left(đpcm\right)\)
=> AI = BI (c t/ứng)(đpcm)
b/ \(\Delta ACI=\Delta BCI\left(ýa\right)\)
\(\Rightarrow\widehat{AIC}=\widehat{BIC}\) (g t/ứng)
mà \(\widehat{AIC}+\widehat{BIC}=180^o\) (kề bù)
=> \(\widehat{AIC}=\widehat{BIC}=90^o\)
=> CI _l_ AB
Vì AI = BI mà AB = 6
=> AI = BI = 3
Áp dụng định lý Py-ta-go vào \(\Delta ACI\) vuông tại I có: \(CI^2+AI^2=AB^2\)
hay \(CI^2+3^2=5^2\)
\(\Rightarrow CI^2=5^2-3^2=16\)
\(\Rightarrow CI=4\left(cm\right)\)
c/ Xét 2 \(\Delta vuông\): \(\Delta ACK\) và \(\Delta BCK\) có:
AK: chung
AC = BC (gt)
=> \(\Delta ACK=\Delta BCK\left(ch-cgv\right)\)
\(\Rightarrow\widehat{ACK}=\widehat{BCK}\) (g t/ứng)
=> CK là tia p/g của góc ACB (1)
Lại có: CI là tia p/g của góc ACB (gt)
=> CK trùng CI
=> 3 điểm C, I, K thẳng hàng (đpcm)
a: Xét ΔAHD vuông tại H và ΔAID vuông tại I có
AD chung
AH=AI
=>ΔAHD=ΔAID
=>góc HAD=gócIAD
=>AD là phân giác của góc HAI
b: Xét ΔDHM vuông tại H và ΔDIC vuông tại I có
DH=DI
góc HDM=góc IDC
=>ΔDHM=ΔDIC
=>DM=DC
=>ΔDMC cân tại D
c: AH+HM=AM
AI+IC=AC
mà AH=AI và HM=IC
nên AM=AC
=>ΔAMC cân tại A
mà AN là trung tuyến
nên AN vuông góc MC
Xét ΔCAM có
AN,MI,CH là các đường cao
=>AN,MI,CH đồng quy
Cho \(\Delta\)ABC cân tại A. Qua B và C lần lượt kẻ BH, CK vuông góc với AC,
AB tại H và K. Hai đường này cắt nhau tại I.
Có : \(\Delta\)ABC cân tại A.
\(\Leftrightarrow\widehat{ABC}=\widehat{ACB}\)
\(\Leftrightarrow\widehat{ABH}+\widehat{HBC}=\widehat{ACK}+\widehat{KCB}\)(1)
Xét \(\Delta\)BHC và \(\Delta\)CKB có :
\(\widehat{BHC}=\widehat{CKB}=90^0\)
\(\Leftrightarrow\widehat{KCB}+\widehat{KBC}=\widehat{HBC}+\widehat{HCB}=90^0\)
Mà : \(\widehat{KBC}=\widehat{HCB}\)
\(\Leftrightarrow\widehat{KCB}=\widehat{HBC}\)
+) \(\Leftrightarrow\Delta\)IBC cân tại I +) Từ (1)
\(\Leftrightarrow IB=IC\)(2) \(\Leftrightarrow\widehat{ABH}=\widehat{ACK}\)(3)
Lại có do \(\Delta\)ABC cân tại A
\(\Leftrightarrow AB=AC\) (4)
Từ (2);(3) và (4) \(\Rightarrow\Delta\)ABI = \(\Delta\)ACI (cgc)
\(\Rightarrow\widehat{BAI}=\widehat{CAI}\left(cgtu\right)\)
\(\Leftrightarrow\)AI là phân giác góc A ( đpcm )