K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2020

A B C H K I

   GT      

Cho \(\Delta\)ABC cân tại A. Qua B và C lần lượt kẻ BH, CK vuông góc với AC,

AB tại H và K. Hai đường này cắt nhau tại I.

KLCMR : AI là tia phân giác góc A.

Có : \(\Delta\)ABC cân tại A.

\(\Leftrightarrow\widehat{ABC}=\widehat{ACB}\)

\(\Leftrightarrow\widehat{ABH}+\widehat{HBC}=\widehat{ACK}+\widehat{KCB}\)(1)

Xét \(\Delta\)BHC và \(\Delta\)CKB có :

\(\widehat{BHC}=\widehat{CKB}=90^0\)

\(\Leftrightarrow\widehat{KCB}+\widehat{KBC}=\widehat{HBC}+\widehat{HCB}=90^0\)

Mà : \(\widehat{KBC}=\widehat{HCB}\)

 \(\Leftrightarrow\widehat{KCB}=\widehat{HBC}\)            

  +)  \(\Leftrightarrow\Delta\)IBC cân tại I                     +) Từ (1)

       \(\Leftrightarrow IB=IC\)(2)                       \(\Leftrightarrow\widehat{ABH}=\widehat{ACK}\)(3)

Lại có do \(\Delta\)ABC cân tại A 

\(\Leftrightarrow AB=AC\) (4)

Từ (2);(3) và (4) \(\Rightarrow\Delta\)ABI = \(\Delta\)ACI (cgc)

\(\Rightarrow\widehat{BAI}=\widehat{CAI}\left(cgtu\right)\)

\(\Leftrightarrow\)AI là phân giác góc A ( đpcm )


 

a: Xét ΔAHD vuông tại H và ΔAID vuông tại I có

AD chung

AH=AI

=>ΔAHD=ΔAID

=>góc HAD=gócIAD

=>AD là phân giác của góc HAI

b: Xét ΔDHM vuông tại H và ΔDIC vuông tại I có

DH=DI

góc HDM=góc IDC

=>ΔDHM=ΔDIC

=>DM=DC

=>ΔDMC cân tại D

c: AH+HM=AM

AI+IC=AC

mà AH=AI và HM=IC

nên AM=AC

=>ΔAMC cân tại A

mà AN là trung tuyến

nên AN vuông góc MC

Xét ΔCAM có

AN,MI,CH là các đường cao

=>AN,MI,CH đồng quy