b/ 2√81+√(2−√5)2−7√5+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=35-2.1+3.7^3=33+3.343=33+1029=1062\\ b,=5.64+6-162+7=320-149=171\)
a)
\(\Rightarrow A=\frac{\frac{1}{11}-\frac{1}{13}-\frac{1}{17}}{5\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{17}\right)}+\frac{2\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}{7\left(\frac{1}{3}-\frac{1}{9}-\frac{1}{27}+\frac{1}{81}\right)}\)
\(\Rightarrow A=\frac{1}{5}+\frac{2}{7}\)
\(\Rightarrow A=\frac{17}{35}\)
b)
\(\Rightarrow B=5\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{56}-\frac{1}{61}\right)\)
\(\Rightarrow B=5\left(\frac{1}{11}-\frac{1}{61}\right)\)
\(\Rightarrow B=5.\frac{50}{671}=\frac{250}{671}\)
c)
\(\Rightarrow C=1-\left(\frac{1}{1.3}+\frac{1}{2.3}+\frac{1}{2.5}+....+\frac{1}{49.25}\right)\)
\(\Rightarrow C=1-2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{49.50}\right)\)
\(\Rightarrow C=1-2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\right)\)
\(\Rightarrow C=1-1-\frac{1}{25}\)
\(\Rightarrow C=\frac{1}{25}\)
a)=(-5)6=56
b)=(-6)3.(-7)3=[(-6)(-7)]3=423
c)=(-3).(-3)4.(-7)3(-7)2.(-2).(-2)4
=(-3)5.(-7)5.(-2)5
=[(-3)(-7)(-2)]5
=(-42)5
Bài 1 :
a) \(...=5^5:5^4=5\)
b) \(...=7^8:7^9=\dfrac{1}{7}\)
c) \(...=2^{15}:\left(2^6.2^5\right)=2^{15}:2^{11}=2^4=16\)
d) \(...=3^{28}:3^{26}=3^2=9\)
Bài 2 :
a) \(...=3^2.3^3:3^4=3^5:3^4=3\)
b) \(...=10^9-10^9=0\)
c) \(...=5^{10}.5^{30}:5^{12}=5^{40}:5^{12}=5^{28}\)
a)\(\left(\frac{3}{5}\right)^5\times x=\left(\frac{3}{7}\right)^7\)
\(\Leftrightarrow\frac{3^5}{5^5}\times x=\frac{3^7}{7^7}\)
\(\Leftrightarrow x=\frac{3^7}{7^7}:\frac{3^5}{5^5}\)
\(\Leftrightarrow x=\frac{3^7\times5^5}{7^7\times3^5}\)
\(\Leftrightarrow x=\frac{3^2\times5^5}{7^7}\)
b)\(\left(\frac{-1}{3}\right)^3\times x=\frac{1}{81}\)
\(\Leftrightarrow\frac{\left(-1\right)^3}{3^3}\times x=\frac{1}{3^4}\)
\(\Leftrightarrow x=\frac{1}{3^4}:\frac{-1}{3^3}\)
\(\Leftrightarrow x=\frac{1\times3^3}{3^4\times\left(-1\right)}\)
\(\Leftrightarrow x=\frac{1}{-3}\)
c)\(\Leftrightarrow\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
\(\Leftrightarrow x-\frac{1}{2}=\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{3}+\frac{1}{2}\)
\(\Leftrightarrow x=\frac{5}{6}\)
d)\(\Leftrightarrow\left(x+\frac{1}{2}\right)^4=\left(\frac{2}{3}\right)^4\)
\(\Leftrightarrow x+\frac{1}{2}=\frac{2}{3}\)
\(\Leftrightarrow x=\frac{2}{3}-\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{6}\)
b. \(\left(\dfrac{3^2}{9}.\dfrac{3^3}{81}\right)^{12}:\left(\dfrac{3^6}{81^2}\right)^{10}\)
\(=\left(1.\dfrac{1}{3}\right)^{12}:\left(\dfrac{1}{9}\right)^{10}\)
\(=\left(\dfrac{1}{3}\right)^{12}:\left(\dfrac{1}{9}\right)^{10}\)
\(=\left[\left(\dfrac{1}{3}\right)^2\right]^6:\left(\dfrac{1}{9}\right)^{10}\)
\(=\left(\dfrac{1}{9}\right)^6:\left(\dfrac{1}{9}\right)^{10}\)
\(=\left(\dfrac{1}{9}\right)^{-4}=6561\)
a) 2^7 . 9^3 / 6^5 . 8^2
= 2^7 . 3^9 / 2^5 . 3^5 . 2^6
= 2^-4 . 3^4