tìm n:
3n+1 chia hết cho 11-2n
help me.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3n-5⋮n+1\)
\(< =>3.\left(n+1\right)-8⋮n+1\)
\(< =>8⋮n+1\)
\(< =>n+1\inƯ\left(8\right)\)
Nên ta có bảng sau :
n+1 | 1 | 8 | -1 | -8 | 2 | 4 | -4 | -2 |
n | 0 | 7 | -2 | -9 | 1 | 3 | -5 | -3 |
Vậy ...
Ta có 3n-5=3(n+1)-8
Để 3n-5 chia hết cho n+1 thì 3(n+1)-8 chia hết cho n+1
Vì 3(n+1) chia hết cho n+1
=> -8 chia hết cho n+1
n nguyên => n+1 nguyên
=> n+1 thuộc Ư (-8)={1;2;4;8}
Nếu n+1=1 => n=0
Nếu n+1=2 => n=1
Nếu n+1=4 => n=3
Nếu n+1=8 => n=7
Đễ nhưng quá nhiều không đủ kiên nhẫn để làm. Bạn đăng lần lượt thôi.
11,
a, 4x-3\(\vdots\) x-2 1
x-2\(\vdots\) x-2\(\Rightarrow\) 4(x-2)\(\vdots\) x-2\(\Rightarrow\) 4x-8\(\vdots\) x-2 2
Từ 1 và 2 ta có:
(4x-3)-(4x-8)\(\vdots\) x-2
\(\Rightarrow\) 4x-3-4x+8\(\vdots\) x-2
\(\Rightarrow\) 5 \(\vdots\) x-2
\(\Rightarrow\) x-2\(\in\) Ư(5)
\(\Rightarrow\) x-2\(\in\){-5;-1;1;5}
\(\Rightarrow\) x\(\in\) {-3;1;3;7}
Vậy......
Phần b và c làm tương tự như phần a pn nhé!
\(a)n+7⋮n+2\)
\(\Rightarrow n+2+5⋮n+2\)
Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)
Lập bảng :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
Vậy : ...
3n + 14 chia hết cho 3n + 1
3n + 14 =( 3n + 1 ) + 13 chia hết cho 3n + 1
= (3n + 1 ) chia hết cho 3n + 1
Suy ra 13 chia hết cho 3n + 1
Suy ra 3n + 1 thuộc Ư(13)={ 1 ; 13 }
3n + 1 | 1 | 13 |
n | 0 | 4 |
Vậy n thuộc { 0 ; 4 }
n + 11 chia hết cho n + 3
n + 11 = ( n + 3 ) + 8 chia hết cho n + 3
= n + 3 chia hết cho n + 3
Suy ra 8 chia hết cho n + 3
Suy ra n + 3 thuộc Ư(8) = { 1;2;4;8 }
n+ 3 | 1 | 2 | 4 | 8 |
n | không có giá trị nào cho n | không có giá trị nào cho n | 1 | 5 |
Vậy n thuộc {1 ; 5 }
2n + 27 chia hết cho 2n + 1
2n + 27 =( 2n + 1 )+ 26 chia hết cho 2n + 1
= ( 2n + 1 ) chia hết cho 2n + 1
Suy ra 2n + 1 thuộc Ư( 26 ) = { 1 ; 2 ; 13 ; 26 }
2n +1 | 1 | 2 | 13 | 26 |
n | 0 | ko có giá trị cho n | 6 | ko có giá trị cho n |
Vậy n thuộc { 0;6}
Nếu đúng thì mk và kb nha love you thanks mk nhanh nhất đó
b) ( 2n + 9 ) chia hết cho ( n + 1 )
=> 2n + 2 + 7 chia hết cho ( n + 1 )
=> 2 . ( n + 1 ) chia hết cho ( n + 1 ) mà 2 . ( n + 1 ) chia hết cho ( n + 1 )
=> 7 chia hết cho ( n + 1 ) => ( n + 1 ) thuộc Ư ( 7 ) = { 1 , 7 }
Vậy n thuộc { 1 , 7 }
\(3n+1⋮n+1\\ \Leftrightarrow3\left(n+1\right)-2⋮n+1\\ \Leftrightarrow2⋮n+1\\ \Leftrightarrow n+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow n\in\left\{-3;-2;0;1\right\}\)
\(\left(3n+11\right)⋮\left(n+1\right)\)
\(\Rightarrow3\left(n+1\right)+8⋮\left(n+1\right)\)
\(\Rightarrow n+1\inƯ\left(8\right)=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
\(\Rightarrow n\in\left\{0;-2;1;-3;3;-5;7;-9\right\}\)
#)Giải :
1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)
\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn
a) Ta có: n + 7 = (n + 3) + 4
Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}
Lập bảng :
n + 3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | -2 | -4 | -1 | -5 | 1 | -7 |
Vậy ...
b) Ta có: 2n + 5 = 2(n + 3) - 1
Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(1) = {1; -1}
Với: n + 3 = 1 => n = 1 - 3 = -2
n + 3 = -1 => n= -1 - 3 = -4
Vậy ...
phải tự làm bạn mới có thể tiến bộ và bạn sẽ giỏi hơn , với mỗi bài toán phải cố gắng suy nghĩ đểgiải
+ 3n+1 chia hết cho 11-2n => 2(3n+1) chia hết cho 11-2n. Ta tìm điều kiện của n để 2(3n+1) chia hết cho 11-2n
+ 2(3n+1)=6n+2= -3(11-2n)+35 Ta thấy -3(11-2n) chia hết cho 11-2n => để 2(3n+1) chia hết cho 11-2n thì 35 phải chia hết cho 11-2n.
=> để 35 chia hết cho 11-2n thì 11-2n=-1, 1, -5, 5, -7, 7, -35, 35.
* Với 11-2n=-1 => n=6
* Với 11-2n=1 => n=5
* Với 11-2n=-5 => n=8
* Với 11-2n=5 => n=3
* Với 11-2n=-7 =>n=9
* Với 11-2n=7 => n=2
* Với 11-2n=-35 => n=23
* Với 11-2n=35 => n=-12
Với n=2, 3, 5, 6, 8, 9, 23, -12 thì 3n+1 chia hết cho 11-2n