Tìm GTLN của A= \(\frac{x^2+4x+19}{x^2+4x+7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Ta có: \(x^2+4x+7\)
\(=x^2+4x+4+3\)
\(=\left(x+2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-2
Để A lớn nhất thì x2+4x+7 phải có giá trị dương nhỏ nhất
Ta có:
x2+4x+7=(x+2)2+3\(\ge\)3
=> GTNN của x2+4x+7 là 3
=> GTLN của A là 5/3
cách 2
\(Pain=\left(\sqrt{2x+1}-\sqrt{\frac{16}{2x+1}}\right)^2\ge0\)
\(=2x+1-\frac{16}{2x+1}-2\sqrt{\frac{\left(2x+1\right)16}{\left(2x+1\right)}}\ge0\)
\(=\frac{\left(2x+1\right)^2+16}{2x+1}\ge8\)
\(a=\frac{2x+1}{4x^2+4x+17}=\frac{2x+1}{\left(2x+1\right)^2+16}\ge\frac{1}{8}\)
\(4x^2A+4xa+17a=2x+1.\)
\(4x^2A+2x\left(2a-1\right)+\left(17a-1\right)=0\)
để pt có nghiệm thì \(\Delta`=\left(2a-1\right)^2-4a\left(17a-1\right)\ge0\)
\(\Delta`=\left(1-8a\right)\left(8a+1\right)\ge0\)
\(1-8a\ge0\Leftrightarrow a\le\frac{1}{8}\) " max
\(8a+1\ge0\Leftrightarrow a\ge-\frac{1}{8}\) Min
\(\frac{1}{8}\ge a\ge-\frac{1}{8}\)
tìm hộ lỗi sai :)) , chia sẻ luôn cách tìm min max pt dạng như trên
công thức tổng quát nè
\(M=\frac{ax^2+bx+C}{ex^2+fx+g}\)
\(ex^2M+fxM+gM=ax^2+bx+c\)
\(x^2\left(e-a\right)+x\left(fm-b\right)+\left(gm-c\right)=0\)
\(\Delta=\left(fm-b\right)^2-4\left(gm-c\right)\left(e-a\right)\ge0\)
pt bậc 2 ẩn M , tính denta ra nghiệm rồi phân thích thành nhân tử là ok
\(\frac{x^2-4x-4}{x^2-4x+5}=\frac{x^2-4x+5}{x^2-4x+5}-\frac{9}{x^2-4x+5}=1-\frac{9}{\left(x^2-4x+4\right)+1}=1-\frac{9}{\left(x-2\right)^2+1}\)
Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow\frac{9}{\left(x-2\right)^2+1}\le9\Rightarrow1-\frac{9}{\left(x-2\right)^2+1}\ge-8\)
Dấu "=" xảy ra khi (x-2)2=0 => x-2=0 => x=2
Vậy gtnn của biểu thức là -8 khi x=2
đề yêu cầu tìm cả max và min hay chỉ 1 là được?
Tấm vải thứ 2 dài là :
85 + 35 = 120 ( m )
Cả 3 tấm vải dài :
85 + 120 + 120 = 325 ( m )
Đ/S : 325 m
chúc cậu hok tốt @_@
a)A=4(x+11/8)^2 -153/16
Min A=-153/16 khi x=-11/8
b)B=3(x-1/3)^2 -4/3
Min B=-4/3 khi x=1/3
Bài 1:
a) \(A=4x^2+11x-2=\left(4x^2+11x+\dfrac{121}{16}\right)-\dfrac{153}{16}=\left(2x+\dfrac{11}{4}\right)^2-\dfrac{153}{16}\ge-\dfrac{153}{16}\)
\(minA=-\dfrac{153}{16}\Leftrightarrow x=-\dfrac{11}{8}\)
b) \(B=3x^2-2x-1=3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\dfrac{4}{3}=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minB=-\dfrac{4}{3}\Leftrightarrow x=\dfrac{1}{3}\)
Bài 2:
a) \(A=-x^2+3x-1=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{5}{4}=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)
\(maxA=\dfrac{5}{4}\Leftrightarrow x=\dfrac{3}{2}\)
b) \(B=-x^2-4x+7=-\left(x^2+4x+4\right)+11=-\left(x+2\right)^2+11\le11\)
\(maxB=11\Leftrightarrow x=-2\)
\(A=\frac{1}{\left(x-1\right)\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}\)
\(2A=\frac{1}{x-1}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}=\frac{1}{x-1}-\frac{1}{x+5}\)
\(2A=\frac{x+5-x+1}{\left(x-1\right)\left(x+5\right)}=\frac{6}{x^2+4x-5}\Leftrightarrow A=\frac{3}{\left(x+2\right)^2-9}\le\frac{3}{-9}=-3\)
Max A = -3 khi x =-2 (TM)
\(A=\frac{4x^2-12x+15}{x^2-3x+3}=4+\frac{3}{x^2-3x+3}=4+\frac{3}{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}\le8\)
dau '=' xay ra khi \(x=\frac{3}{2}\)
\(B=\frac{4x^2-8x+12}{x^2-2x+5}=4-\frac{8}{x^2-2x+5}=4-\frac{8}{\left(x-1\right)^2+4}\le2\)
dau '=' xay ra khi \(x=1\)
Bài 2:
a: \(A=x^2+8x\)
\(=x^2+8x+16-16\)
\(=\left(x+4\right)^2-16\ge-16\)
Dấu '=' xảy ra khi x=-4
b: \(B=-2x^2+8x-15\)
\(=-2\left(x^2-4x+\dfrac{15}{2}\right)\)
\(=-2\left(x^2-4x+4+\dfrac{7}{2}\right)\)
\(=-2\left(x-2\right)^2-7\le-7\)
Dấu '=' xảy ra khi x=2
c: \(C=x^2-4x+7\)
\(=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\ge3\)
Dấu '=' xảy ra khi x=2
e: \(E=x^2-6x+y^2-2y+12\)
\(=x^2-6x+9+y^2-2y+1+2\)
\(=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=3 và y=1
\(A=\frac{x^2+4x+7+12}{x^2+4x+7}=1+\frac{12}{x^2+4x+7}=1+\frac{12}{x^2+4x+4+3}=1+\frac{12}{\left(x+2\right)^2+3}\)
Có A lớn nhất khi 12/x^2+4x+7 lớn nhất
Vì (x+2)2 >=0 ⇒ (x+2)2 +3 >=3 với mọi x
Vậy 12/(x+2)2+3 lớn nhất khi (x+2)2+3 nhỏ nhất
⇒ (x+2)2+3 có giá trị nhỏ nhất ⇔ x+2=0⇔x=-2
Nên A có giá trị lớn nhất khi x=-2
khi đó: A= 1+12/(-2+2)2+3=5
Hay A có giá trị lớn nhất là 5 khi x=-2