Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình nha
a) Vì M là trung điểm AB, PM=MQ, P,M,Q thẳng hàng=> M là trung điểm PQ
=>PQ giao AB tại trung điểm mỗi đường=> APBQ là hbh mà AB vuông góc với PQ=> APBQ là hình thoi
b) vì APBQ là hình thoi=> PB//AQ mà PB//CE=> CE//AQ (1)
ta có PQ vuông góc với AB
AC vuông góc với AB
=> AC//PQ=> EQ//AC ( PQ cắt đường thẳng // với PB tại E=> E thuộc PQ)(2)
từ (1);(2)=> ACEQ là hbh
c) 1) trong tam giác ABC có
MN //AC( N thuộc MP)
AM=MB
=> MN là đtb của tam giác => MN=AC/2=> AC=2MN
2) Vì AC=2MN=> AC=6cm
MN là đtb=> CN=BN
tam giác ABC vuông tại A
=> AN=BN=CN=BC/2( tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông)
=> BC=2AN=10cm
vì tam giác ABC vuông tại A=> AB^2+AC^2=BC^2
=> AB^2=100-36
=> AB=8 (AB>0)
=> chu vi tam giác ABC là 6+8+10=24(cm)
a) Dễ thấy tứ giác ADME có 3 góc vuông nên nó là hình chữ nhật.
Tam giác PBM co BP là đường trung trực nên nó là tam giác cân. Vậy thì BP là phân giác hay \(\widehat{B_1}=\widehat{B_2}\)
Tương tự \(\widehat{C_1}=\widehat{C_2}\) mà \(\widehat{B_1}+\widehat{C_1}=90^o\) nên \(\widehat{PBM}+\widehat{MCQ}=2\left(\widehat{B_1}+\widehat{C_1}\right)=180^o\)
Chúng lại ở vị trí trong cùng phía nên PB // QC
Vậy BCQP là hình thang.
b) Áp dụng Pi-ta-go : \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.6.8=24\left(cm^2\right)\)
c) Do AB là trung trực PM nên AP = AM
Tương tự AQ = AM nên AP = AQ.
Lại có \(\widehat{A_1}=\widehat{A_2};\widehat{A_3}=\widehat{A_4}\) mà \(\widehat{A_2}+\widehat{A_3}=90^o\Rightarrow\widehat{A_1}+\widehat{A_2}+\widehat{A_3}+\widehat{A_4}=180^o\)
hay A, P, Q thẳng hàng.
Từ đó ta có A là trung điểm PQ.
d) Gọi AH là đường cao hạ từ A xuống BC.
Ta có
\(P_{PBCQ}=PQ+PB+BC+CQ=2AM+PB+BM+MC+CQ=2AM+2BC=2\left(AM+BC\right)\)
Áp dụng bất đẳng thức Cô-si ta thấy \(AM+BC\ge2\sqrt{AM.BC}\)
mà AM là đường xiên nên \(AM\ge AH\)
Vậy thì \(AM+BC\ge2\sqrt{AM.BC}\ge2\sqrt{AH.BC}=2\sqrt{AB.AC}\)
Vậy thì \(minP_{PBCQ}=2\sqrt{AB.AC}\) khi M là chân đường cao hạ từ A xuống BC.
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
=>\(\widehat{BAM}=\widehat{CAM}\)
Xét ΔPAM vuông tại P và ΔQAM vuông tại Q có
AM chung
\(\widehat{PAM}=\widehat{QAM}\)
Do đó: ΔPAM=ΔQAM
=>PA=QA và MP=MQ
b: AP=AQ
=>A nằm trên đường trung trực của PQ(1)
MP=MQ
=>M nằm trên đường trung trực của PQ(2)
Từ (1) và (2) suy ra AM là đường trung trực của PQ
=>AM\(\perp\)PQ
Vì ∆MNP cân tại M
=> MN = MP , MNP = MPN
=> MNP = \(\frac{180°-NMP}{2}\)
Vì MQ = MK
=> ∆MQK cân tại M
=> MQ = MK , MKQ = MQK
=> QKM = \(\frac{180°-QMK}{2}\)
Mà QMK = NMP ( đối đỉnh)
=> QKM = MNP
Mà 2 góc này ở vị trí so le trong
=> QK//NP
=> QKPN là hình thang (1)
Ta có :
QM + MP = QP
KM + MN = KN
Mà QM = MK , MN = MP
=> OP = KN (2)
=> QKPN là hình thang cân