GPT
4x^2 =5x \(-2\sqrt{x-1}-1\)'
Giusp midnh nhanh ạ:3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\left(3\frac{1}{2}-x\right).1\frac{1}{4}=\frac{15}{6}\)
\(\left(\frac{7}{2}-x\right).\frac{5}{4}=\frac{15}{6}\)
\(\frac{7}{2}-x=\frac{15}{6}:\frac{5}{4}\)
\(\frac{7}{2}-x=2\)
\(x=\frac{7}{2}-2\)
\(\Rightarrow x=\frac{3}{2}\)
ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow2x^2+5x-1=7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow2\left(x^2+x+1\right)+3\left(x-1\right)-7\sqrt{\left(x-1\right)\left(x^2+x+1\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a\\\sqrt{x-1}=b\end{matrix}\right.\)
\(\Rightarrow2a^2+3b^2-7ab=0\)
\(\Leftrightarrow\left(a-3b\right)\left(2a-b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=3b\\2a=b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=3\sqrt{x-1}\\2\sqrt{x^2+x+1}=\sqrt{x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=9\left(x-1\right)\\4\left(x^2+x+1\right)=x-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
b/ ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{x+2}+2x-2\sqrt{x^2-4}-2=0\)
Đặt \(\sqrt{x-2}-\sqrt{x+2}=a< 0\)
\(\Rightarrow a^2=2x-2\sqrt{x^2-4}\)
Phương trình trở thành:
\(a+a^2-2=0\Leftrightarrow\left[{}\begin{matrix}a=1\left(l\right)\\a=-2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{x-2}-\sqrt{x+2}=-2\)
\(\Leftrightarrow\sqrt{x-2}+2=\sqrt{x+2}\)
\(\Leftrightarrow x+2+4\sqrt{x-2}=x+2\)
\(\Leftrightarrow\sqrt{x-2}=0\)
Lời giải:
\(\lim_{x\to -1}\frac{\sqrt[3]{x}+x^2+x+1}{x+1}=\lim_{x\to -1}\frac{x(x+1)}{x+1}+\lim_{x\to -1}\frac{\sqrt[3]{x}+1}{x+1}\)
\(=\lim_{x\to -1}x+\lim_{x\to -1}\frac{x+1}{(x+1)(\sqrt[3]{x^2}-\sqrt[3]x+1)}\)
\(=\lim_{x\to -1}x+\lim_{x\to -1}\frac{1}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}\)
\(=-1+\frac{1}{1-(-1)+1}=\frac{-2}{3}\)
e/
ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow x^2+8x-2+6\sqrt{x\left(x+1\right)\left(x-2\right)}\le5x^2-4x-6\)
\(\Leftrightarrow3\sqrt{x\left(x+1\right)\left(x-2\right)}\le2x^2-6x-2\)
\(\Leftrightarrow3\sqrt{\left(x^2-2x\right)\left(x+1\right)}\le2x^2-6x-2\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-2x}=a\ge0\\\sqrt{x+1}=b>0\end{matrix}\right.\)
\(\Rightarrow2a^2-2b^2=2x^2-6x-2\)
BPT trở thành:
\(3ab\le2a^2-2b^2\Leftrightarrow2a^2-3ab-2b^2\ge0\)
\(\Leftrightarrow\left(2a+b\right)\left(a-2b\right)\ge0\)
\(\Leftrightarrow a\ge2b\Rightarrow\sqrt{x^2-2x}\ge2\sqrt{x+1}\)
\(\Leftrightarrow x^2-2x\ge4x+4\)
\(\Leftrightarrow x^2-6x-4\ge0\)
\(\Rightarrow x\ge3+\sqrt{13}\)
d/
ĐKXĐ: \(x\ge-1\)
\(3\sqrt{\left(x+1\right)\left(x^2-x+1\right)}+4x^2-5x+3\ge0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow4a^2-b^2=4x^2-5x+3\)
BPT trở thành:
\(4a^2+3ab-b^2\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(4a-b\right)\ge0\)
\(\Leftrightarrow4a-b\ge0\Rightarrow4a\ge b\)
\(\Rightarrow4\sqrt{x^2+x+1}\ge\sqrt{x+1}\)
\(\Leftrightarrow16x^2+16x+4\ge x+1\)
\(\Leftrightarrow16x^2+15x+3\ge0\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le\frac{-15-\sqrt{33}}{32}\\x\ge\frac{-15+\sqrt{33}}{32}\end{matrix}\right.\)
+) \(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\left(1\right)\)
+) Lập phương 2 vế ta được :
\(2x+3\sqrt[3]{x^2-1}\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)=5x\left(2\right)\)
Thay ( 1 ) vào ( 2 ) ta có :
\(\sqrt[3]{x^2-1}.\sqrt[3]{5x}=x\)
\(\Rightarrow4x^3-5x=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=\pm\frac{\sqrt{5}}{2}\end{cases}}\)
P/s : ko có tgian làm full . Thông cảm nhen ^-^
câu a :
\(\left(x-\dfrac{1}{3}\right)^2-\dfrac{1}{2}=1\dfrac{3}{4}\\ \left(x-\dfrac{1}{3}\right)^2-\dfrac{1}{2}=\dfrac{7}{4}\\ \left(x-\dfrac{1}{3}\right)^2=\dfrac{1}{4}+\dfrac{1}{2}\\ \left(x-\dfrac{1}{3}\right)^2=\dfrac{9}{4}\\ x-\dfrac{1}{3}=\sqrt{\dfrac{9}{4}}\\ x-\dfrac{1}{3}=\dfrac{3}{2}\\ x=\dfrac{3}{2}+\dfrac{1}{3}\\ x=\dfrac{11}{6}\)
câu b :
\(\dfrac{x-3}{-2}=\dfrac{-8}{x-3}\\ \Rightarrow\left(x-3\right)\cdot\left(x-3\right)=\left(-2\right)\cdot\left(-8\right)\\ \Rightarrow\left(x-3\right)^2=16\\ x-3=\sqrt{16}\\ x-3=4\\ x=4+3\\ x=7\)
câu c :
\(\dfrac{9}{x}=\dfrac{-35}{105}\\ \Rightarrow\left(-35\right)\cdot x=9\cdot105\\ \left(-35\right)\cdot x=945\\ x=945\div\left(-35\right)\\ x=-27\)
`@` `\text {Ans}`
`\downarrow`
`1)`
\(2x+\dfrac{1}{2}=\dfrac{5}{3}\)
`\Rightarrow`\(2x=\dfrac{5}{3}-\dfrac{1}{2}\)
`\Rightarrow`\(2x=\dfrac{7}{6}\)
`\Rightarrow`\(x=\dfrac{7}{6}\div2\)
`\Rightarrow`\(x=\dfrac{7}{12}\)
Vậy, `x = 7/12`
`2)`
\(\dfrac{1}{7}+\dfrac{4}{5}x=\dfrac{5}{3}\)
`\Rightarrow`\(\dfrac{4}{5}x=\dfrac{5}{3}-\dfrac{1}{7}\)
`\Rightarrow`\(\dfrac{4}{5}x=\dfrac{32}{21}\)
`\Rightarrow`\(x=\dfrac{32}{21}\div\dfrac{4}{5}\)
`\Rightarrow`\(x=\dfrac{40}{21}\)
Vậy, `x = 40/21`
`3)`
\(\dfrac{3}{5}-\dfrac{3}{5}x=\dfrac{1}{7}\)
`\Rightarrow`\(\dfrac{3}{5}x=\dfrac{3}{5}-\dfrac{1}{7}\)
`\Rightarrow`\(\dfrac{3}{5}x=\dfrac{16}{35}\)
`\Rightarrow`\(x=\dfrac{16}{35}\div\dfrac{3}{5}\)
`\Rightarrow`\(x=\dfrac{16}{21}\)
Vậy, `x = 16/21`
`4)`
\(\dfrac{5}{6}-3x=\dfrac{3}{4}\)
`\Rightarrow`\(3x=\dfrac{5}{6}-\dfrac{3}{4}\)
`\Rightarrow`\(3x=\dfrac{1}{12}\)
`\Rightarrow`\(x=\dfrac{1}{12}\div3\)
`\Rightarrow`\(x=\dfrac{1}{36}\)
Vậy, `x = 1/36`
`5)`
\(\dfrac{5}{3}-\dfrac{1}{2}x=\dfrac{3}{7}\)
`\Rightarrow`\(\dfrac{1}{2}x=\dfrac{5}{3}-\dfrac{3}{7}\)
`\Rightarrow`\(\dfrac{1}{2}x=\dfrac{26}{21}\)
`\Rightarrow`\(x=\dfrac{26}{21}\div\dfrac{1}{2}\)
`\Rightarrow`\(x=\dfrac{52}{21}\)
Vậy, `x = 52/21`
`6)`
\(5x+\dfrac{1}{2}=\dfrac{2}{3}\)
`\Rightarrow`\(5x=\dfrac{2}{3}-\dfrac{1}{2}\)
`\Rightarrow`\(5x=\dfrac{1}{6}\)
`\Rightarrow`\(x=\dfrac{1}{6}\div5\)
`\Rightarrow`\(x=\dfrac{1}{30}\)
Vậy, `x = 1/30.`
\(\lim\limits_{x\rightarrow1}\dfrac{2-\sqrt[]{2x-1}\sqrt[3]{5x+3}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{2-2\sqrt[]{2x-1}+2\sqrt[]{2x-1}-\sqrt[]{2x-1}.\sqrt[3]{5x+3}}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{2\left(1-\sqrt[]{2x-1}\right)+\sqrt[]{2x-1}\left(2-\sqrt[3]{5x+3}\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{-\dfrac{4\left(x-1\right)}{1+\sqrt[]{2x-1}}-\dfrac{5\sqrt[]{2x-1}\left(x-1\right)}{4+2\sqrt[3]{5x+3}+\sqrt[3]{\left(5x+3\right)^2}}}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\left(-\dfrac{4}{1+\sqrt[]{2x-1}}-\dfrac{5\sqrt[]{2x-1}}{4+2\sqrt[3]{5x+3}+\sqrt[3]{\left(5x+3\right)^2}}\right)\)
\(=-\dfrac{4}{1+1}-\dfrac{5\sqrt[]{1}}{4+4+4}=-\dfrac{29}{12}\)
ĐKXĐ....
\(\Leftrightarrow4x^2-5x+1=-2\sqrt{x-1}\)
\(\Leftrightarrow3x^3-3x+x^2-2x+1=-2\sqrt{x-1}\)
\(\Leftrightarrow3x\left(x-1\right)+\left(x-1\right)^2=-2\sqrt{x-1}\)
Đặt \(\sqrt{x-1}=t\left(t\ge0\right)\Rightarrow t^2=x-1\Leftrightarrow x=t^2+1\)
\(\Leftrightarrow3\left(t^2+1\right)t^2+t^4=-2t\)
\(\Leftrightarrow3t^4+3t^2+t^4+2t=0\)
\(\Leftrightarrow4t^4+3t^2+2t=0\)
\(\Leftrightarrow t\left(4t^3+3t+2\right)=0\Leftrightarrow\orbr{\begin{cases}t=0\\t=-\frac{1}{2}\left(l\right)\end{cases}}\)
\(\Rightarrow t=0\Leftrightarrow x=1\left(tm\right)\)
Vậy x =1