cho p q là 2 số nguyên tố lớn hơn 5. Chứng minh p^4+2019q^4 chia hết cho 20
Chứng minh chia hết cho 5 ko chia trường hợp có đk ko? Giúp mk vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=p^4+2019q^4=p^4-q^4+2020q^4$
$=(p^2-q^2)(p^2+q^2)+2020q^4$
Vì $p,q$ là số nguyên tố lớn hơn 5 nên $(p,5)=(q,5)=1$
$\Rightarrow p^2,q^2\equiv 1,4\pmod 5$
Nếu $p^2\equiv q^2\pmod 5$ thì $p^2-q^2\equiv 0\pmod 5$
$\Rightarrow A=(p^2-q^2)+2020q^4\equiv 0 \pmod 5(1)$
Nếu $p^2,q^2$ không cùng số dư khi chia cho $5$ thì:
$p^2+q^2\equiv 1+4\equiv 0\pmod 5$
$\Rightarrow A\equiv 0\pmod 5(2)$
Từ $(1);(2)\Rightarrow A\vdots 5(*)$
Mặt khác:
Vì $p,q>5$ nên $p,q$ lẻ
$\Rightarrow p^2\equiv q^2\equiv 1\pmod 4$
$\Rightarrow p^2-q^2\equiv 0\pmod 4$
$\Rightarrow A=(p^2-q^2)(p^2+q^2)+2020q^4\equiv 0\pmod 4$
$\Rightarrow A\vdots 4(**)$
Từ $(*); (**)\Rightarrow A\vdots (4.5=20)$
bài 4
Các số chia hết cho 2 nhưng không chia hết cho 5 có tận cùng 2, 4, 6, 8 ; mỗi chục có bốn số đó.
Từ 0 đến 999 có 100 chục nên có :
4.100 = 400 (số).
Vậy trong các số tự nhiên nhỏ hơn 1000, có 400 số chia hết cho 2 nhưng ko chia hết cho 5
bài 5
Gọi thương của số tự nhiên x tuần tự là a và b
Theo đề, ta có:
x = 4a + 1
x = 25b + 3
<=> 4a + 1 = 25b + 3
4a = 25b + 2
a = (25b + 2)/4
b = 2 ; a = 13 <=> x = 53
b = 6 ; a = 38 <=> x = 153
b = 10 ; a = 63 <=> x = 253
b = 14 ; a = 88 <=> x = 353
b = 18 ; a = 113 <=> x = 453
Đáp số: Tất cả các số tự nhiên, tận cùng là 53 đều thoả mãn điều kiện.
1
gọi số cần tìm là p.dễ thấy p lẻ
=>p=a+2 và p=b-2
=>a=p-2 và b=p+2
vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3
với p-2=3=>p=5=7-2(chọn)
p=3=>p=1+2(loại)
p+2=3=>p=1(loại)
vậy p=5
2
vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3
theo giả thiết:
p3 = p2 + d = p1 + 2d (*)
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ)
đặt d = 2m, xét các trường hợp:
* m = 3k => d chia hết cho 6
* m = 3k + 1: khi đó 3 số là:
p2 = p1 + d = p1 + 2m = p1 + 6k + 2
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt)
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--)
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1
* m = 3k + 2, khi đó 3 số là:
p2 = p1 + d = p1 + 2m = p1 + 6k + 4
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt)
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt)
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.
3
ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.
mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ
=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6
4
vì p là SNT >3=>p=3k+1 hoặc p=3k+2
với p=3k+1=>p+8=3k+9 chia hết cho 3
với p=3k+2=>p+4=3k+6 ko phải là SNT
vậy p+8 là hợp số
5
vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3
vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3
=>8p+1 là hợp số
6.
Ta có: Xét:
+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)
+n=1
=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)
+n=2
=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)
+n=3
=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)
+n=4
n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)
Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3
+n=4k+1
⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)
+n=4k+2
=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)
+n=4k+3
=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)
⇔n=4
4.vì p là số nguyên tố >3
nên p có dạng 3k+1;3k+2
xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)
xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)
vậy p+8=(3k+1)+8=3k+9 chia hết cho 3
Vậy p+8 là hợp số
1.p4−q4=p4−q4−1+1=(p4−1)−(q4−1)1.p4−q4=p4−q4−1+1=(p4−1)−(q4−1)
lại có 240=8.2.3.5240=8.2.3.5
ta cần chứng minh (p4−1) ⋮ 240(p4−1) ⋮ 240 và (q4−1) ⋮ 240(q4−1) ⋮ 240
C/m: (p4−1) ⋮ 240(p4−1) ⋮ 240:
(p4−1)=(p−1)(p+1)(p2+1)(p4−1)=(p−1)(p+1)(p2+1)
vì pp là số nguyến tố lớn hơn 55 nên pp là số lẻ
⟹(p−1)(p+1)⟹(p−1)(p+1) là tích của 22 số lẻ liên tiếp nên chia hết cho 88 (1)(1)
Do p>5p>5 nên:
p=3k+1→p−1=3k→p−1 ⋮ 3p=3k+1→p−1=3k→p−1 ⋮ 3
hoặc p=3k+2→p+1=3(k+1)→p+1 ⋮ 3p=3k+2→p+1=3(k+1)→p+1 ⋮ 3 (2)(2)
mặt khác vì pp là số lẻ nên p2p2 là số lẻ →p2+1→p2+1 là số chẵn nên p2+1 ⋮ 2p2+1 ⋮ 2 (3)(3)
giờ cần chứng minh p4−1 ⋮ 5p4−1 ⋮ 5:
pp có thể có dạng:
p=5k+1→p−1 ⋮ 5p=5k+1→p−1 ⋮ 5
p=5k+2→p2+1=25k2+20k+5→p2+1 ⋮ 5p=5k+2→p2+1=25k2+20k+5→p2+1 ⋮ 5
p=5k+3→p2+1=25k2+30k+10→p2+1 ⋮ 5p=5k+3→p2+1=25k2+30k+10→p2+1 ⋮ 5
p=5k+4→p+1=5k+5→p+1 ⋮ 5p=5k+4→p+1=5k+5→p+1 ⋮ 5
p=5kp=5k mà pp là số nguyến tố nên k=1→p=5k=1→p=5 (ko thỏa mãn ĐK)
⟹p4−1 ⋮ 5⟹p4−1 ⋮ 5 (4)(4)
từ (1),(2),(3),(4)(1),(2),(3),(4), suy ra p4−1p4−1 chia hết cho 2.3.5.82.3.5.8 hay p4−1 ⋮ 240p4−1 ⋮ 240
chứng minh tương tự, ta có: q4−1 ⋮ 240q4−1 ⋮ 240
Kết luận.......................
p4−q4=p4−q4−1+1=(p4−1)−(q4−1)
lại có 240=8.2.3.5
ta cần chứng minh (p4−1) ⋮ 240 và (q4−1) ⋮ 240
C/m: (p4−1) ⋮ 240:
(p4−1)=(p−1)(p+1)(p2+1)
vì p là số nguyến tố lớn hơn 5 nên p là số lẻ
⟹(p−1)(p+1) là tích của 2 số lẻ liên tiếp nên chia hết cho 8 (1)
Do p>5 nên:
p=3k+1→p−1=3k→p−1 ⋮ 3
hoặc p=3k+2→p+1=3(k+1)→p+1 ⋮ 3 (2)
mặt khác vì p là số lẻ nên p2 là số lẻ →p2+1 là số chẵn nên p2+1 ⋮ 2 (3)
giờ cần chứng minh p4−1 ⋮ 5:
p có thể có dạng:
p=5k+1→p−1 ⋮ 5
p=5k+2→p2+1=25k2+20k+5→p2+1 ⋮ 5
p=5k+3→p2+1=25k2+30k+10→p2+1 ⋮ 5
p=5k+4→p+1=5k+5→p+1 ⋮ 5
p=5k mà p là số nguyến tố nên k=1→p=5 (ko thỏa mãn ĐK)
⟹p4−1 ⋮ 5 (4)
từ (1),(2),(3),(4), suy ra p4−1 chia hết cho 2.3.5.8 hay p4−1 ⋮ 240
chứng minh tương tự, ta có: q4−1 ⋮ 240
Tick nhé
Vì p,q là 2 SNT >5
Suy ra p,q là số lẻ
Suy ra p,q chia hết cho 2
Suy ra p^4,q^4 chia hết cho 4
Suy ra p^4+2019q^4 chia hết cho 4 (1)
Mặt khác: Xét 5 TH 5k, 5k+1, 5k+2, 5k+3, 5k+4
Suy ra p^4+2019q^4 chia hết cho 5 (2)
Mà (5;4)=1 (3)
Từ (1), (2) và (3) suy ra đpcm
cảm ơn bn nhiều nha nhưng cách này mk làm r mk cần cách khac nhanh hơn