Cho B= 108+80.Chứng tỏ B là bội của 2,3,5,9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a là bội của b => a = b.q ( q là số tự nhiên khác 0) (1)
b là bôị của c => b = c.t ( t là số tự nhiên khác 0) (2)
Thay (2) vào (1) ta có: a = c.t.q => a chia hết cho c
=> a là bội của c (đpcm)
Theo đề bài
a=m.b (m là số nguyên)
b=n.c (n số nguyên)
=> a=m.n.c
Do m,n là số nguyên => m.n là số nguyên => a là bội của c
a là bội của b
=> a chia hết cho b
=> a = bk
Mà b chia hết cho c
=> b = cq
=> a = bk = cq.k chia hết cho c
=> a chia hết cho c
=> a là bội của c
=> Đpcm
Có a là bội của b, b là bội của c
=> \(a⋮b\)và \(b⋮c\)
=> \(a⋮b⋮c\)
=> \(a⋮c\)
=> a là bội của c
Có a là bội của b =>a\(⋮\)b ( dấu \(⋮\)là chia hết nha )
Có b là bội của c =>b\(⋮\)c
Có a\(⋮\)b ,b\(⋮\)c =>a\(⋮\)c
=> a là bội của c
\(10^{34}=2^{34}.5^{34}=2^3.2^{31}.5^{34}=8.2^{31}.5^{34}⋮8\)
\(\Rightarrow b=10^{34}+8⋮8\) (1)
Lại có:
\(10\equiv1\left(\mod9\right)\Rightarrow10^{34}\equiv1\left(\mod9\right)\)
\(\Rightarrow10^{34}+8\equiv9\left(\mod9\right)\)
\(\Rightarrow10^{34}+8⋮9\) (2)
(1);(2) \(\Rightarrow10^{34}+8⋮72\) (đpcm)
a vừa là ước vừa là bội của b thì chắc chắn |a|=b hay a=b hoặc a=-b
có thể chứng minh đơn giản như sau: giả sử a= bx và b=ay ( với x ; y là 2 số nguyên)
thế b=ay vào a=bx ta được: a= axy => xy=1 vì x và y nguyên nên
x=1 và y=1 hoặc x=-1 và y=-1 thay x và y vào điều giả sử ta được a=b hoặc a=-b
B = 108 + 80
B = (5.2)8 + 24 . 5
Mà (5.2)8 ⋮ 2 , 5
24 . 5 ⋮ 2 , 5
⇒ (108 + 80) ⋮ 2 , 5
B = 108 + 80
B = 100000000 + 80
= 1+0+0+0+0+0+0+0+0+8+0
= 1 + 8 = 9
Mà 9 ⋮ 3 , 9
⇒ (108 + 80) ⋮ 3 , 9
➤ (108 + 80) ⋮ 2 , 3 , 5 , 9