K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2020

\(36^{36}-9^{10}⋮9\) vì các số hạng đều chia hết cho 9 .

Mặt khác :

36 có tận cùng là 6

\(9^{10}=\left(9^2\right)^5=81^5\) có tận cùng là 1

\(36^{36}-9^{10}\) có tận cùng là 6 - 1 = 5

\(36^{36}-9^{10}\) chia hết cho 5

Mà (5 ; 9 ) = 1

 \(36^{36}-9^{10}⋮45\)

2 tháng 5 2017

Sơ đồ con đường

Lời giải chi tiết

Áp dụng tính chất chia hết của một hiệu.

Ta có:

36 ⋮ 9 ⇒ 36 36 ⋮ 9 9 ⋮ 9 ⇒ 9 10 ⋮ 9 ⇒ 36 36 + 9 10 ⋮ 9

5 tháng 9 2019

AH
Akai Haruma
Giáo viên
14 tháng 12 2021

Lời giải:
$n^5-n=n(n^4-1)=n(n^2-1)(n^2+1)=n(n-1)(n+1)(n^2+1)$
Vì $n(n-1)(n+1)$ là tích 3 số nguyên liên tiếp nên $n(n-1)(n+1)\vdots 3$
Vì $n(n-1)$ là tích 2 số nguyên liên tiếp nên $n(n-1)\vdots 2$

$\Rightarrow n^5-n\vdots 2,3$
Mà $(2,3)=1$ nên $n^5-n\vdots 6(*)$

Mặt khác:
Ta biết rằng 1 scp chia 5 có thể có dư là $0,1,4$
$\Rightarrow n(n^2-1)(n^2+1)\vdots 5, \forall n$ nguyên $(**)$

Từ $(*); (**)\Rightarrow n^5-n\vdots (5.6=30)$

21 tháng 8 2021

b) A=2+22+23+...+220

A=(2+22)+(23+24)+...+(219+220)

A=3.2+3.23+...+3.219

A=3.(2+23+25+...+219)

⇒A⋮3

phần c) làm tương tự

21 tháng 8 2021

Câu a thì sao ạ

19 tháng 2 2022

a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55⋮55\)

b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\left(32+1\right)=2^{15}.33⋮33\)

c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405⋮405\)

a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)

b: \(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)

c: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5=3^{22}\cdot405⋮405\)

24 tháng 7 2023

\(C=1+3+3^2+3^3+...+3^{11}\\ a,C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+\left(3^6+3^7+3^8\right)+\left(3^9+3^{10}+3^{11}\right)\\ =13+3^3.\left(1+3+3^2\right)+3^6.\left(1+3+3^2\right)+3^9.\left(1+3+3^2\right)\\ =13+3^3.13+3^6.13+3^9.13\\ =13.\left(1+3^3+3^6+3^9\right)⋮13\)

Ý a phải chia hết cho 13 chứ em?

b: C=(1+3+3^2+3^3)+...+3^8(1+3+3^2+3^3)

=40(1+...+3^8) chia hết cho 40

a: C ko chia hết cho 15 nha bạn

20 tháng 10 2015

  Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1) 
= a(a - 1)(a + 1)(a² - 4 + 5) 
= a(a - 1)(a + 1)[ (a² - 4) + 5) ] 
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1) 
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1) 
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) 
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5 
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5. 
=> a^5 - a chia hết cho 5 
Mà a^5 chia hết cho 5 => a chia hết cho 5. 
( Nếu a không chia hết cho 5 thì a^5 - a không chia hết cho 5 vì a^5 chia hết cho 5) 

b) Chứng minh rằng nếu (5n + 1) là số chẵn thì n là số lẻ. 
Giải: Nếu 5n + 1 là số chẵn thì => 
5n + 1 có dạng 2k (k là số tự nhiên) 
=> 5n + 1 = 2k 
=> 5n = 2k - 1 
Do 2k - 1 là số lẻ => 5n là số lẻ (1) 
Nếu n là số chẵn thì 5n chẵn =>
=> n phải là số lẻ

6 tháng 7 2017

cái này lp 8 học hằng đẳng thức thì ra hoy