K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gỉa sử \(1\le x\le y\le z\) khi đó từ pt suy ra xyz=x+y+z \(\le\)3z => xy\(\le\)3

\(\Rightarrow x.y=\left\{1;2;3\right\}\)

Nếu xy=1 thì \(x=y=1\Rightarrow2+z=z\left(vl\right)\)

Nếu xy=2 => \(x=1;y=2;z=3\)

Nếu xy=3 => \(x=1;y=3;z=2< y\)( trái với giả sử )

Vậy x;y;z là hoán vị của (1;2;3)

31 tháng 12 2019

@ Huy @ Sao có thể giả sử: \(1\le x\le y\le z\) ????

Nếu đề bài cho là tìm các số nguyên dương em mới đc phép làm vậy nhé!

16 tháng 4 2016

làm đc thì giỏi. Ko làm đc cũng chả sao cả. Biết làm rồi

giải ra cho mk tham khảo đi được ko?????? mk ko bít

5447564

19 tháng 8 2016

Bài 1:

Giả sử có các số nguyên thỏa mãn các đẳng thức đã cho

Xét x3+xyz=x(x2+yz)=579 -->x lẻ.

Tương tự xét

y3+xyz=795; z3+xyz=975 ta đc: y,z là số lẻ

Vậy x3 là 1 số lẻ; xyz là 1 số lẻ, do đó x3+xyz là một số chẵn trái với đề bài

Vậy không tồn tại các số nguyên x,y,z thỏa mãn đẳng thức đã cho

Bài 2:

Ta có: VP=1984

Vì 2x-2y=1984>0 =>x>y

=>VT=2x-2y=2y(2x-y-1)

pt trở thành:

2y(2x-y-1)=26*31 

\(\Rightarrow\begin{cases}2^y=2^6\left(1\right)\\2^{x-y}-1=31\left(2\right)\end{cases}\)

Từ pt (1) =>y=6

Thay y=6 vào pt (2) đc:

2x-6-1=31 => 2x-6=32

=>2x-6=25

=>x-6=5 <=>x=11

Vậy x=11 và y=6

 

 

 

 

30 tháng 12 2020

Ta có: \(2\left(x+y+z\right)=xyz\)

\(\Rightarrow1=\frac{2}{xy}+\frac{2}{yz}+\frac{2}{zx}\)

G/s \(x\ge y\ge z\ge1\) khi đó:

\(1=2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\le\frac{3}{z^2}\Rightarrow z^2\le3\Rightarrow z=1\)

Thay vào: \(2x+2y+2=xy\)

\(\Leftrightarrow\left(xy-2x\right)-\left(2y-4\right)=6\)

\(\Leftrightarrow\left(x-2\right)\left(y-2\right)=6\)

Ta có: \(\hept{\begin{cases}x-2\ge-1\\y-2\ge-1\end{cases}}\) nên ta có các TH sau:

TH1: \(\hept{\begin{cases}x-2=6\\y-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=8\\y=3\end{cases}}\)

TH2: \(\hept{\begin{cases}x-2=3\\y-2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=4\end{cases}}\)

Vậy \(\left(x,y,z\right)\in\left\{\left(8,3,1\right);\left(5,4,1\right)\right\}\) và 2 hoán vị

18 tháng 1 2022

Xét \(x\le y\le z\) vì x,y,z nguyên dương

\(\Rightarrow xyz\ne0\)và \(x\le y\le z\Rightarrow xyz=x+y+z\le3z\)

\(\Rightarrow xy\le3\Rightarrow xy\in\left\{1;2;3\right\}\)

- Nếu \(xy=1\Rightarrow x=y=1\)ta có: \(2+z=z\)( không thỏa mãn )

- Nếu \(xy=2\Rightarrow x=1;y=2\Rightarrow z=3\)( thỏa mãn ) ( vì \(x\le y\))

- Nếu \(xy=3\Rightarrow x=1;y=3\Rightarrow z=2\)( thỏa mãn ) ( vì \(x\le y\))

Vậy......................................

18 tháng 1 2022

 \(\text{Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z. }\)
\(x,y,z\)nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 
=> xy thuộc {1 ; 2 ; 3}. 
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí. 
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3. 
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2. 
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

30 tháng 12 2020

Đặt \(2z=a>0\)

Khi đó: \(\frac{1}{2}xya=x+y+a\)

\(\Rightarrow\frac{1}{2}=\frac{1}{xy}+\frac{1}{xa}+\frac{1}{ya}\)

Vì vai trò của 3 biến x,y,a là như nhau nên không mất tổng quát g/s: \(1\le x\le y\le a\)

Khi đó \(\frac{1}{2}=\frac{1}{xy}+\frac{1}{xa}+\frac{1}{ya}\le\frac{1}{x^2}+\frac{1}{x^2}+\frac{1}{x^2}=\frac{3}{x^2}\)

\(\Rightarrow x^2\le6\Rightarrow x\in\left\{1;2\right\}\)

Nếu x = 1 : \(yz=1+y+2z\)

\(\Leftrightarrow\left(yz-y\right)-\left(2z-2\right)=3\)

\(\Leftrightarrow\left(y-2\right)\left(z-1\right)=3\)

Xét PT ước nguyên dương khá dễ

Tương tự nếu x = 2 : 

\(2yz=2+y+2z\)

\(\Leftrightarrow\left(2yz-y\right)-\left(2z-1\right)=3\)

\(\Leftrightarrow\left(2z-1\right)\left(y-1\right)=3\)

Đến đây thì mình nghĩ chắc bạn cũng có thể tự giải được rồi!

9 tháng 12 2021

Ko mất tính tổng quát, giả sử \(0< x\le y\le z\)

\(\Leftrightarrow xyz=x+y+z\le3z\\ \Leftrightarrow xyz-3z\le0\\ \Leftrightarrow z\left(xy-3\right)\le0\\ \Leftrightarrow xy\le3\)

Mà \(0< x\le y\Leftrightarrow xy>0\Leftrightarrow xy\in\left\{1;2;3\right\}\)

Với \(xy=1\Leftrightarrow x=y=1\Leftrightarrow z+1+1=z\left(\text{vô nghiệm}\right)\)

Với \(xy=2\Leftrightarrow x=1;y=2\left(x\le y\right)\)

\(\Leftrightarrow3+z=2z\\ \Leftrightarrow z=3\)

Với \(xy=2\Leftrightarrow x=1;y=3\left(x\le y\right)\)

\(\Leftrightarrow1+3+z=3z\\ \Leftrightarrow2z=4\\ \Leftrightarrow z=2\)

Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\) và các hoán vị

9 tháng 12 2021

Tí idol giúp em thêm mấy bài nữa nhé ! yeu

4 tháng 10 2019

Cho hỏi ko phải cô giáo có dc làm ko:v

Xét \(x+y+z=0\) ta có:\(x+y=-z;y+z=-x;z+x=-y\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(-x\right)\left(-y\right)\left(-z\right)=-xyz\)

\(\Rightarrow P=\frac{-xyz}{xyz}=-1\)

Xét \(x+y+z\ne0\) ta có:

\(\frac{x+y-z}{z}=\frac{x-y+z}{y}=\frac{-x+y+z}{x}\)

\(\Rightarrow\frac{x+y}{z}-1=\frac{x+z}{y}-1=\frac{y+z}{x}-1\)

\(\Rightarrow\frac{x+y}{z}=\frac{x+z}{y}=\frac{z+y}{x}\) ( 1 )

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\left(1\right)=\frac{x+y+x+z+z+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Khi đó:

\(P=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{x+y}{z}\cdot\frac{y+z}{x}\cdot\frac{z+x}{y}=2\cdot2\cdot2=8\)

4 tháng 10 2019

các bạn ơi làm hộ mình với