Cho \(A=\frac{x+1}{x+3}-\frac{x-1}{3-x}+\frac{2x-2x^2}{x^2-9}\)
a) Tìm điều kiện xác định và rút gọn A
b) Tìm x để A nhận giá trị dương
_Cần gấp!!!_
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)
\(\Leftrightarrow2x^2+8x+6=0\)
\(\Leftrightarrow x^2+4x+4-1=0\)
\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)
Vậy : \(x=-3\) thì P = 1.
a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}\)
\(\Leftrightarrow A=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2\left(x+2\right)}{x-3}\)
\(\Leftrightarrow A=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{\left(x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow A=\frac{x+4}{x-3}\)
b) Để \(A\inℤ\)
\(\Leftrightarrow\frac{x+4}{x-3}\inℤ\)
\(\Leftrightarrow1+\frac{7}{x-3}\inℤ\)
\(\Leftrightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{2;4;-4;10\right\}\)
c) Để \(A=\frac{3}{5}\)
\(\Leftrightarrow\frac{x+4}{x-3}=\frac{3}{5}\)
\(\Leftrightarrow5x+20=3x-9\)
\(\Leftrightarrow2x+29=0\)
\(\Leftrightarrow x=-\frac{29}{2}\)
d) Để \(A< 0\)
\(\Leftrightarrow\frac{x+4}{x-3}< 0\)
\(\Leftrightarrow1+\frac{7}{x-3}< 0\)
\(\Leftrightarrow\frac{-7}{x-3}< 1\)
\(\Leftrightarrow-7< x-3\)
\(\Leftrightarrow x>-4\)
e) Để \(A>0\)
\(\Leftrightarrow\frac{x+4}{x-3}>0\)
\(\Leftrightarrow1+\frac{7}{x-3}>0\)
\(\Leftrightarrow\frac{-7}{x-3}>1\)
\(\Leftrightarrow-7>x-3\)
\(\Leftrightarrow x< -4\)
a: ĐKXĐ: \(x\notin\left\{-1;3\right\}\)
Ta có: \(A=\dfrac{x^3-3}{x^2-2x-3}+\dfrac{6-2x}{x+1}+\dfrac{x+3}{3-x}\)
\(=\dfrac{x^3-3-2\left(x-3\right)^2-\left(x+3\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}\)
\(=\dfrac{x^3-3-2x^2+12x-18-x^2-4x-3}{\left(x-3\right)\left(x+1\right)}\)
\(=\dfrac{x^4-3x^2+8x-24}{\left(x-3\right)\left(x+1\right)}\)
\(=\dfrac{x^2\left(x-3\right)+8\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}\)
\(=\dfrac{x^2+8}{x+1}\)
b: Ta có: A=x-2
\(\Leftrightarrow x^2+8=x^2-x-2\)
\(\Leftrightarrow8+x+2=0\)
hay x=-10
Câu 3 :
\(a,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\) ĐKXđ : \(x\ne\pm1\)
\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{5\left(x-1\right)}\)
\(A=\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{10}{x+1}\)
\(B=\left(\frac{x}{3x-9}+\frac{2x-3}{3x-x^2}\right).\frac{3x^2-9x}{x^2-6x+9}.\)
ĐKXđ : \(x\ne0;x\ne3\)
\(B=\left(\frac{x}{3\left(x-3\right)}+\frac{2x-3}{x\left(3-x\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\left(\frac{x^2}{3x\left(x-3\right)}+\frac{9-6x}{3x\left(x-3\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\frac{x^2-6x+9}{3x\left(x-3\right)}.\frac{3x\left(x-3\right)}{x^2-6x+9}=1\)
a) ĐKXĐ: \(\hept{\begin{cases}x+3\ne0\\3-x\ne0\\x^2-9\ne0\end{cases}}\) <=> \(\hept{\begin{cases}x\ne-3\\x\ne3\\x\ne\pm3\end{cases}}\)
Ta có: A = \(\frac{x+1}{x+3}-\frac{x-1}{3-x}+\frac{2x-2x^2}{x^2-9}\)
A = \(\frac{\left(x+1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x+3\right)\left(x-1\right)}{\left(x+3\right)\left(x-3\right)}+\frac{2x-2x^2}{\left(x-3\right)\left(x+3\right)}\)
A = \(\frac{x^2-2x-3+x^2+2x-3+2x-2x^2}{\left(x-3\right)\left(x+3\right)}\)
A = \(\frac{2x-6}{\left(x-3\right)\left(x+3\right)}\)
A = \(\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
A = \(\frac{2}{x+3}\)
b) Để A nhận giá trị dương <=> 2 \(⋮\)x + 3
<=> x + 3 \(\in\)Ư(2) = {1; 2}
Lập bảng:
Vậy ....