K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

Ta có:

A = \(\frac{x^2+4x+19}{x^2+4x+7}=\frac{\left(x^2+4x+7\right)+12}{x^2+4x+7}=1+\frac{12}{\left(x^2+4x+4\right)+3}=1+\frac{12}{\left(x+2\right)^2+3}\)

Ta thấy : \(\left(x+2\right)^2\ge0\forall x\) => \(\left(x+2\right)^2+3\ge3\forall x\)

=> \(\frac{12}{\left(x+2\right)^2+3}\le4\forall x\)

=> \(1+\frac{12}{\left(x+2\right)^2+3}\le4\forall x\)

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy MaxA = 4 khi x = -2

27 tháng 12 2019

\(A=\frac{x^2+4x+19}{x^2+4x+7}\)

Để A đạt GTLN thì \(\frac{1}{A}\)phải đạt GTNN

Ta có: \(\frac{1}{A}=\frac{x^2+4x+7}{x^2+4x+19}=1-\frac{12}{x^2+4x+19}\)

Để \(\frac{1}{A}\)đạt GTNN thì \(\frac{12}{x^2+4x+19}\)phải đạt GTLN => \(x^2+4x+19\)phải đạt GTNN

\(x^2+4x+19=\left(x+2\right)^2+15\ge15\)

Dấu "=" khi x + 2 = 0 <=> x = -2

Do đó GTNN của \(\frac{1}{A}\)là \(1-\frac{12}{15}=\frac{1}{5}\)khi x = -2

Vậy GTLN của A là 5 khi x = -2

Câu 18: Giá trị nhỏ nhất của biểu thức x2 – 6x + 13 làA.   3                                      B. 4                               C. -3                     D. -4    Câu 19 : Giá trị lớn nhất của biểu thức  -x2 +4x -  7 làA.   3                                    B. 4                                C....
Đọc tiếp

Câu 18: Giá trị nhỏ nhất của biểu thức x2 – 6x + 13 là

A.   3                                      B. 4                               C. -3                     D. -4  

  Câu 19 : Giá trị lớn nhất của biểu thức  -x2 +4x -  7 là

A.   3                                    B. 4                                C. -3                        D. 5

  Câu 20: Điền vào chỗ trống 4x2 + 4x – y2 + 1 = (…)(2x + y + 1):

       A. 2x + y + 1                                                           B. 2x – y + 1

      C. 2x – y                                                                  D. 2x + y

2
30 tháng 10 2021

18.B
19.C
20.C

30 tháng 10 2021

18. B

19. C

20.C

2 tháng 6 2021

`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`

2 tháng 6 2021

16+5=23 :))

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Tính giá trị nhỏ nhất:

\(A=x^2-4x+1=(x^2-4x+4)-3=(x-2)^2-3\)

Vì $(x-2)^2\geq 0, \forall x\in\mathbb{R}$ nên $A=(x-2)^2-3\geq 0-3=-3$

Vậy $A_{\min}=-3$

Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

$B=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 0+10=10$
Vậy $B_{\min}=10$ 

Giá trị này đạt tại $(2x+1)^2=0\Leftrightarrow x=-\frac{1}{2}$
$C=(x-1)(x+3)(x+2)(x+6)$

$=(x-1)(x+6)(x+3)(x+2)$
$=(x^2+5x-6)(x^2+5x+6)$

$=(x^2+5x)^2-36\geq 0-36=-36$

Vậy $C_{\min}=-36$. Giá trị này đạt $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

 

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Tìm giá trị lớn nhất:

$D=5-8x-x^2=21-(x^2+8x+16)=21-(x+4)^2$

Vì $(x+4)^2\geq 0, \forall x\in\mathbb{R}$ nên $D=21-(x+4)^2\leq 21$

Vậy $D_{\max}=21$. Giá trị này đạt tại $(x+4)^2=0\Leftrightarrow x=-4$

$E=4x-x^2+1=5-(x^2-4x+4)=5-(x-2)^2\leq 5$

Vậy $E_{\max}=5$. Giá trị này đạt tại $(x-2)^2=0\Leftrightarrow x=2$

 

17 tháng 7 2023

\(A=x^2-4x+20=x^2-4x+4+16=\left(x-2\right)^2+16\)

Do \(\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2+16\ge16\)

\(\Rightarrow Min\left(A\right)=16\)

\(B=x^2-3x+7=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}+7=\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\)

Do \(\left(x-\dfrac{3}{2}\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

\(\Rightarrow Min\left(B\right)=\dfrac{19}{4}\)

\(C=-x^2-10x+70=-\left(x^2+10x+25\right)+25+70=-\left(x-5\right)^2+95\)

Do \(-\left(x-5\right)^2\le0\)

\(\Rightarrow-\left(x-5\right)^2+95\le95\)

\(\Rightarrow Max\left(C\right)=95\)

\(D=-4x^2+12x+1=-\left(4x^2-12x+9\right)+9+1=-\left(2x-3\right)^2+10\)

Do \(-\left(2x-3\right)^2\le0\)

\(\Rightarrow-\left(2x-3\right)^2+10\le10\)

\(\Rightarrow Max\left(D\right)=10\)

25 tháng 1 2019

20 tháng 8 2023

a.

\(A=-\left(x^2-4x-2\right)=-\left(x^2-4x+4-6\right)\\ =-\left(x-2\right)^2+6\le6\)

GTLN của A đạt 6 khi và chỉ khi `x=2`

b.

\(B=-\left(x^2-x-2\right)=-\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{9}{4}\right)\\ =-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)

GTLN của B đạt \(\dfrac{9}{4}\) khi và chỉ khi \(x=\dfrac{1}{2}\)

20 tháng 8 2023

a) \(A=-x^2+4x+2\)

\(A=-\left(x^2-4x-2\right)\)

\(A=-\left[\left(x-2\right)^2-6\right]\)

\(A=-\left(x-2\right)^2+6\)

Mà: \(-\left(x-2\right)^2\le0\forall x\)  nên 

\(A=-\left(x-2\right)^2+6\le6\)

Dấu "=" xảy ra:

\(-\left(x-2\right)^2+6=6\Leftrightarrow x=2\)

Vậy: \(A_{max}=6\) khi \(x=2\)

b) \(B=x-x^2+2\)

\(B=-\left(x^2-x-2\right)\)

\(B=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)

\(B=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\)

Mà: \(-\left(x-\dfrac{1}{2}\right)^2\le0\forall x\) 

Nên: \(B=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)

Dấu "=" xảy ra:

\(-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}=\dfrac{9}{4}\Leftrightarrow x=\dfrac{1}{2}\)

Vậy: \(B_{max}=\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\)

12 tháng 4 2018

Ta có : 

\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)

Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x 

Chúc bạn học tốt ~ 

4 tháng 7 2017

18 tháng 7 2021

có vài chỗ ko thấy

 

20 tháng 12 2021

\(P=-x^2-y^2+4x-4y+2=-\left(x^2-4x+4\right)-\left(y^2+4y+4\right)+10=-\left(x-2\right)^2-\left(y+2\right)^2+10\le10\)

Dấu = xảy ra khi x = 2; y = -2