Tìm 3 số x,y,z biết rằng: \(\frac{x}{y+z+1}\)=\(\frac{y}{x+z+1}\)=\(\frac{z}{x+y-2}\)=x+y+z
Giúp mk với ạ,mk cần gấp lắm❗
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tc của dãy tỉ số = nhau ta được :
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(< =>x+y+z=\frac{1}{2}\left(1\right)\)và \(\hept{\begin{cases}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{cases}}\left(2\right)\)
Từ (1) suy ra \(\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)khi đó hệ 3 pt (2) tương đương \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-z-\frac{3}{2}\end{cases}}\)
\(< =>\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{3}{2}\\3z=-\frac{3}{2}\end{cases}}< =>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)
Vậy ...
bạn Phan Nghĩa cho mình hỏi chỗ này sao bằng được vậy bạn
theo t/c dãy tỉ số bằng nhau thì ta phải được x+y+z/y+z+1+x+z+1+x+y-2 chứ
mình cũng ko hiểu bài của bạn lắm=))
ui, đề thi HSG huyện mình nè. cậu huyện nào mà đăng thế
chứng minh BĐT : \(a^3+b^3+1\ge ab\left(a+b\right)\) với a>0,b>0
\(\Rightarrow a^3+b^3+1\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)
áp dụng BĐT trên,ta có:
\(x+y+1\ge\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)\)
\(\Rightarrow\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{x+z+1}\le\frac{1}{\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)}+\frac{1}{\sqrt[3]{yz}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)}+\frac{1}{\sqrt[3]{xz}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)}\)
\(=\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{\sqrt[3]{xyz}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)}=1\)
Dấu " = " xảy ra khi x = y = z = 1
Ap dung bdt \(a+b\ge\sqrt[3]{a^2b}+\sqrt[3]{ab^2}\left(a,b\ge0\right)\)
ta co \(x+y\ge\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)\)
ma \(xyz=1=>\sqrt[3]{xy}=\frac{1}{\sqrt[3]{z}}\)
nen \(x+y\ge\frac{\sqrt[3]{x}+\sqrt[3]{y}}{\sqrt[3]{z}}\)
=> \(x+y+1\ge\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{\sqrt[3]{z}}\)
=>\(\frac{1}{x+y+1}\le\frac{\sqrt[3]{z}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}\)
chung minh tuong tu cung co \(\frac{1}{x+z+1}\le\frac{\sqrt[3]{y}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}\) va \(\frac{1}{z+y+1}\le\frac{\sqrt[3]{x}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}\)
cong 3 bdt cung chieu ta duoc
\(\frac{1}{x+y+1}+\frac{1}{x+z+1}+\frac{1}{y+z+1}\le\frac{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}=1\)
dau = xay ra khi x=y=z=1
Chuc ban hoc tot !!!
Lời giải:
Nếu $x+y+z=0\Rightarrow \frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=0$
$\Rightarrow x=y=z=0$ (thỏa mãn)
Nếu $x+y+z\neq 0$
Áp dụng tính chất dãy tỉ số bằng nhau:
\(x+y+z=\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{2(x+y+z)}=\frac{1}{2}\)
\(\Rightarrow \left\{\begin{matrix} 2x=y+z+1\\ 2y=x+z+1\\ 2z=x+y-2\\ x+y+z=\frac{1}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 3x=\frac{1}{2}+1\\ 3y=\frac{1}{2}+1\\ 3z=\frac{1}{2}-2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=\frac{1}{2}\\ y=\frac{1}{2}\\ z=\frac{-1}{2}\end{matrix}\right.\)
Vậy......