\(\frac{-2}{1,5}=\frac{x-1}{3}\)tim x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,5-3|5-2x|=12014-17/2
1,5-3|5-2x|=1-17/2
1,5-3|5-2x|=-15/2
-3|5-2x|=-15/2-3/2
-3|5-2x|=-9
|5-2x|=3
TH1:5-2x=3
2x=2
x=1
TH2:5-2x=-3
2x=8
2x=4
Vậy x=1 và x=4
\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
\(\Leftrightarrow\left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\)
\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
\(\Leftrightarrow x+2020=0\)vì \(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\ne0\)
\(\Leftrightarrow x=-2020\)
Có: \(ĐKXĐ:\hept{\begin{cases}x+y-3\ne0\\x-y+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne3-y\\x\ne y-1\end{cases}}}\)
Đặt: \(\hept{\begin{cases}x+y-3=a\\x-y+1=b\end{cases}}\)(1)
\(HPT\Leftrightarrow\hept{\begin{cases}\frac{5}{a}-\frac{2}{b}=8\\\frac{3}{a}+\frac{1}{b}=1,5\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{5}{a}-\frac{2}{b}=8\\\frac{6}{a}+\frac{2}{b}=3\end{cases}}\Leftrightarrow\frac{11}{a}=11\Leftrightarrow a=1}\)
Bn giải b xong rồi giải tiếp HPT (1)
a) \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\)
=> \(\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}\)
=> \(\frac{2}{3}x=-\frac{29}{70}\)
=> \(x=-\frac{29}{70}:\frac{2}{3}\)
=> \(x=-\frac{29}{70}.\frac{3}{2}\)
=> \(x=-\frac{87}{140}\)
b) \(-\frac{21}{13}x+\frac{1}{3}=-\frac{2}{3}\)
=> \(-\frac{21}{13}x=-\frac{2}{3}-\frac{1}{3}\)
=> \(-\frac{21}{13}x=-\frac{3}{3}\)
=> \(-\frac{21}{13}x=1\)
=> \(x=1:\left(-\frac{21}{13}\right)\)
=> \(x=-\frac{13}{21}\)
c) \(\left|x-1,5\right|=2\)
=> \(\left[{}\begin{matrix}x-1,5=2\\x-1,5=-2\end{matrix}\right.=>\left[{}\begin{matrix}x=2+1,5\\x=-2+1,5\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=3,5\\x=-0,5\end{matrix}\right.=>\left[{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)(T/M)
d) \(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
=> \(\left|x+\frac{3}{4}\right|=\frac{1}{2}\)
=> \(=>\left[{}\begin{matrix}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{matrix}\right.=>\left[{}\begin{matrix}x=\frac{1}{2}-\frac{3}{4}\\x=-\frac{1}{2}-\frac{3}{4}\end{matrix}\right.=>\left[{}\begin{matrix}x=-\frac{1}{4}\\x=-\frac{5}{4}\end{matrix}\right.\)(T/M)
HỌC TỐT
a) \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\)
\(\Leftrightarrow\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}\)
\(\Leftrightarrow\frac{2}{3}x=-\frac{29}{70}\)
\(\Leftrightarrow x=-\frac{29}{70}:\frac{2}{3}\)
\(\Leftrightarrow x=-\frac{87}{140}\)
b) \(-\frac{21}{13}x+\frac{1}{3}=-\frac{2}{3}\)
\(\Leftrightarrow-\frac{21}{13}x=-\frac{2}{3}-\frac{1}{3}\)
\(\Leftrightarrow-\frac{21}{13}x=-1\)
\(\Leftrightarrow x=-1:\left(-\frac{21}{13}\right)\)
\(\Leftrightarrow x=\frac{13}{21}\)
c) \(\left|x-1,5\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1,5=2\\x-1,5=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3,5\\x=-0,5\end{matrix}\right.\)
d) \(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
\(\Leftrightarrow\left|x+\frac{3}{4}\right|=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{4}\\x=\frac{5}{4}\end{matrix}\right.\)
+) \(5\frac{2}{3}x+1\frac{2}{3}=4\frac{1}{2}\Leftrightarrow\frac{17}{3}x+\frac{5}{3}=\frac{9}{2}\Leftrightarrow\frac{17}{3}x=\frac{17}{6}\Leftrightarrow x=\frac{1}{2}\)
+) \(\frac{x}{27}=\frac{-2}{9}\Leftrightarrow x=\frac{-2}{9}.27=-6\)
+) \(\left|x+1,5\right|=2\Leftrightarrow\orbr{\begin{cases}x+1,5=2\\x+1,5=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0,5\\x=-3,5\end{cases}}}\)
+) \(A=\left|x-1004\right|-\left|x+1003\right|\)
Ta có BĐT \(\left|x\right|-\left|y\right|\le\left|x-y\right|,\)dấu "=" xảy ra khi và chỉ khi x,y cùng dấu hay \(xy\ge0\)
Áp dụng: \(A=\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x-1003\right|=\left|-2007\right|=2007\)
Vậy \(maxA=2007\Leftrightarrow\left(x-1004\right)\left(x+1003\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\ge1004\\x\le-1003\end{cases}}\)
\((2,7.x-1\frac{1}{2})\div\frac{2}{7}=\frac{-21}{4}\) \(3\frac{1}{3}.x+16\frac{3}{4}=-13.25\)
\(2,7.x-1\frac{1}{2}=-\frac{21}{4}\cdot\frac{2}{7}\) \(\frac{10}{3}.x+\frac{67}{4}=-13.25\)
\(2,7.x-\frac{3}{2}=-\frac{3}{2}\) \(\frac{10}{3}.x+\frac{67}{4}=-\frac{53}{4}\)
\(2,7.x=-\frac{3}{2}+\frac{3}{2}\) \(\frac{10}{3}.x=-\frac{53}{4}-\frac{67}{4}\)
\(2,7.x=0\) \(\frac{10}{3}.x=-30\)
\(x=0:2,7\) \(x=-30:\frac{10}{3}\)
\(x=0\) \(x=-9\)
Vậy x=0 Vậy x= -9
\(\left(4.5-2.x\right):\frac{3}{4}=1\frac{1}{3}\) \(1.5+1\frac{1}{4}.x=\frac{2}{3}\)
\(\left(4.5-2.x\right)=1\frac{1}{3}\cdot\frac{3}{4}\) \(1\frac{1}{4}.x=\frac{2}{3}-1.5\)
\(4.5-2.x=\frac{4}{3}\cdot\frac{3}{4}\) \(\frac{5}{4}.x=\frac{2}{3}-\frac{3}{2}\)
\(4.5-2.x=1\) \(\frac{5}{4}.x=-\frac{5}{6}\)
\(2.x=4.5-1\) \(x=-\frac{5}{6}:\frac{5}{4}\)
\(2.x=3.5\) \(x=-\frac{2}{3}\)
\(x=3.5:2\)
\(x=1.75\) Vậy \(x=-\frac{2}{3}\)
Vậy x=1.75
\(\frac{-2}{1,5}=\frac{-2.2}{1,5.2}=\frac{-4}{3}=\frac{x-1}{3}\)
\(\Rightarrow x-1=-4\)\(\Rightarrow x=-3\)
Vậy \(x=-3\)