K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2019

\(\frac{-2}{1,5}=\frac{-2.2}{1,5.2}=\frac{-4}{3}=\frac{x-1}{3}\)

\(\Rightarrow x-1=-4\)\(\Rightarrow x=-3\)

Vậy \(x=-3\)

27 tháng 12 2019
-2/1,5=x-1/3 =>(-2)×3=1,5×(x-1) =>-6=1,5x-1,5 1,5x=-6+1,5=-4,5 x=-4,5÷1,5 x=-3 Vậy x=-3
1 tháng 12 2019

1,5-3|5-2x|=12014-17/2

1,5-3|5-2x|=1-17/2

1,5-3|5-2x|=-15/2

-3|5-2x|=-15/2-3/2

-3|5-2x|=-9

|5-2x|=3

TH1:5-2x=3

           2x=2

             x=1

TH2:5-2x=-3

           2x=8

           2x=4

Vậy x=1 và x=4

8 tháng 7 2017

\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)

\(\Leftrightarrow\left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\)

\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)

\(\Leftrightarrow x+2020=0\)vì \(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\ne0\)

\(\Leftrightarrow x=-2020\)

1 tháng 8 2017

khó lắm

bây h thì bạn giải đc chưa

22 tháng 6 2016

có chỗ x^7 hả

18 tháng 8 2020

a) \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\)

=> \(\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}\)

=> \(\frac{2}{3}x=-\frac{29}{70}\)

=> \(x=-\frac{29}{70}:\frac{2}{3}\)

=> \(x=-\frac{29}{70}.\frac{3}{2}\)

=> \(x=-\frac{87}{140}\)

b) \(-\frac{21}{13}x+\frac{1}{3}=-\frac{2}{3}\)

=> \(-\frac{21}{13}x=-\frac{2}{3}-\frac{1}{3}\)

=> \(-\frac{21}{13}x=-\frac{3}{3}\)

=> \(-\frac{21}{13}x=1\)

=> \(x=1:\left(-\frac{21}{13}\right)\)

=> \(x=-\frac{13}{21}\)

c) \(\left|x-1,5\right|=2\)

=> \(\left[{}\begin{matrix}x-1,5=2\\x-1,5=-2\end{matrix}\right.=>\left[{}\begin{matrix}x=2+1,5\\x=-2+1,5\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=3,5\\x=-0,5\end{matrix}\right.=>\left[{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)(T/M)

d) \(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)

=> \(\left|x+\frac{3}{4}\right|=\frac{1}{2}\)

=> \(=>\left[{}\begin{matrix}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{matrix}\right.=>\left[{}\begin{matrix}x=\frac{1}{2}-\frac{3}{4}\\x=-\frac{1}{2}-\frac{3}{4}\end{matrix}\right.=>\left[{}\begin{matrix}x=-\frac{1}{4}\\x=-\frac{5}{4}\end{matrix}\right.\)(T/M)

HỌC TỐT vui

18 tháng 8 2020

a) \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\)

\(\Leftrightarrow\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}\)

\(\Leftrightarrow\frac{2}{3}x=-\frac{29}{70}\)

\(\Leftrightarrow x=-\frac{29}{70}:\frac{2}{3}\)

\(\Leftrightarrow x=-\frac{87}{140}\)

b) \(-\frac{21}{13}x+\frac{1}{3}=-\frac{2}{3}\)

\(\Leftrightarrow-\frac{21}{13}x=-\frac{2}{3}-\frac{1}{3}\)

\(\Leftrightarrow-\frac{21}{13}x=-1\)

\(\Leftrightarrow x=-1:\left(-\frac{21}{13}\right)\)

\(\Leftrightarrow x=\frac{13}{21}\)

c) \(\left|x-1,5\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1,5=2\\x-1,5=-2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3,5\\x=-0,5\end{matrix}\right.\)

d) \(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)

\(\Leftrightarrow\left|x+\frac{3}{4}\right|=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{4}\\x=\frac{5}{4}\end{matrix}\right.\)

+) \(5\frac{2}{3}x+1\frac{2}{3}=4\frac{1}{2}\Leftrightarrow\frac{17}{3}x+\frac{5}{3}=\frac{9}{2}\Leftrightarrow\frac{17}{3}x=\frac{17}{6}\Leftrightarrow x=\frac{1}{2}\)

+) \(\frac{x}{27}=\frac{-2}{9}\Leftrightarrow x=\frac{-2}{9}.27=-6\)

+) \(\left|x+1,5\right|=2\Leftrightarrow\orbr{\begin{cases}x+1,5=2\\x+1,5=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0,5\\x=-3,5\end{cases}}}\)

+) \(A=\left|x-1004\right|-\left|x+1003\right|\)

Ta có BĐT \(\left|x\right|-\left|y\right|\le\left|x-y\right|,\)dấu "=" xảy ra khi và chỉ khi x,y cùng dấu hay \(xy\ge0\)

Áp dụng: \(A=\left|x-1004\right|-\left|x+1003\right|\le\left|x-1004-x-1003\right|=\left|-2007\right|=2007\)

Vậy \(maxA=2007\Leftrightarrow\left(x-1004\right)\left(x+1003\right)\ge0\Leftrightarrow\orbr{\begin{cases}x\ge1004\\x\le-1003\end{cases}}\)

21 tháng 1 2017

a) \(\frac{3}{4}+\frac{1}{4}.x=\frac{1}{2}+\frac{1}{2}x\)

\(\Rightarrow3.\frac{1}{4}+\frac{1}{4}.x=\frac{1}{2}.\left(x+1\right)\)

\(\Rightarrow\frac{1}{4}.\left(x+3\right)=\frac{1}{2}.\left(x+1\right)\)

\(\Rightarrow\frac{x+1}{x+3}=\frac{1}{4}:\frac{1}{2}=\frac{1}{2}\)\(\Rightarrow\left(x+1\right).2=x+3\Rightarrow2x+2=x+3\)

\(\Rightarrow2x-x=3-2\Rightarrow x=1\)

vay x=1

3 tháng 3 2018

Câu 2 đây:

\(|x^2+|x-1||=x^2+2\)

\(\Rightarrow\orbr{\begin{cases}x^2+\left|x-1\right|=x^2+2\\x^2+\left|x-1\right|=-x^2-2\left(l\right)\end{cases}}\)

\(\Rightarrow\left|x-1\right|=2\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

3 tháng 3 2018

a)    \(M=\left(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+0,5}{1\frac{1}{6}-0,875+0,7}\right):\frac{2012}{2013}\)

\(=\left(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{2}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\right):\frac{2012}{2013}\)

\(=\left(\frac{2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}-\frac{2\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{10}\right)}{7\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{10}\right)}\right):\frac{2012}{2013}\)

\(=\left(\frac{2}{7}-\frac{2}{7}\right):\frac{2012}{2013}\)

\(=0\)

19 tháng 8 2019

Lời giải :

Do \(VT\ge0\forall x;y\)nên ta có hệ :

\(\hept{\begin{cases}\frac{2}{3}-\frac{1}{2}+\frac{3}{4}x=0\\1,5-\frac{11}{17}+\frac{23}{13}y=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{9}\\y=\frac{-377}{782}\end{cases}}\)

Vậy...