CHO GÓC NHỌN xOy. TRÊN TIA Ox LẤY 2 ĐIỂM A VÀ B, TRÊN TIA Oy LẤY 2 ĐIỂM C VÀ D SAO CHO OA=OC; OB= OD. GỌI I LÀ GIAO ĐIỂM CỦA AD VÀ BC. CM
a) ΔAOD=ΔCOB
b) OI LÀ TIA P GIÁC CỦA GÓC xOy
C) GỌI M, N LẦN LƯỢT LÀ TĐ CỦA AC VÀ BD. CM M, I, N THẲNG HÀNG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh: AD = BC.
Xét ∆OAD và ∆OBC có:
OA = OB (gt);
ˆAODAOD^ chung;
OD = OC (gt)
Do đó ∆OAD = ∆OBC (c.g.c)
Suy ra AD = BC (hai cạnh tương ứng)
b) Chứng minh: ∆EAC = ∆EBD.
Vì ∆OAD = ∆OBC (câu a)
Nên ˆA2=ˆB2A^2=B^2 (hai góc tương ứng)
Mà ˆA1+ˆA2=180oA^1+A^2=180o, ˆB1+ˆB2=180oB^1+B^2=180o (kề bù)
Do đó ˆA1=ˆB1A^1=B^1.
Mặt khác, OA = OB, OC = OD
Suy ra OC – OA = OD – OB
Do đó AC = BD
Xét ∆EAC và ∆EBD có:
ˆA1=ˆB1A^1=B^1 (cmt);
AC = BD (cmt);
ˆOCB=ˆODAOCB^=ODA^ (vì ∆OAD = ∆OBC)
Do đó ∆EAC = ∆EBD (g.c.g).
c) Chứng minh: OE là tia phân giác của góc xOy.
Vì ∆EAC = ∆EBD (câu b)
Nên AE = BE (hai cạnh tương ứng).
Xét ∆OAE và ∆OBE có:
OA = OB (gt);
Cạnh OE chung;
AE = BE (cmt)
Do đó ∆OAE và ∆OBE (c.c.c)
Suy ra ˆAOE=ˆBOEAOE^=BOE^ (hai góc tương ứng)
Hay OE là phân giác của góc xOy.
a: Xét ΔOAD và ΔOBC có
OA=OB
\(\widehat{O}\) chung
OD=OC
Do đó: ΔOAD=ΔOBC
a; Xét 2 tam giác AOD và COB có
OA=OC(gt)
OB=OD(gt)
góc O chung
⇒ΔAOD=ΔOCD⇒ΔAOD=ΔOCD(c.g.c)
⇒⇒AD=CB(2 cạnh tương ứng)
b; vì OB=OD mà OA=OC ⇒⇒AB=CD
Xét 2 tam giác ABD và CDB có
AB=CD
AD=CB
DB là cạnh chung
⇒⇒ΔABD=ΔCDBΔABD=ΔCDB(c.c.c)
c; tự làm dễ rồi
Xét ΔODB và ΔOCA có
\(\dfrac{OD}{OC}=\dfrac{OB}{OA}\left(\dfrac{3}{6}=\dfrac{4}{8}\right)\)
\(\widehat{O}\) chung
Do đó: ΔODB đồng dạng với ΔOCA
=>\(\dfrac{OD}{OC}=\dfrac{OB}{OA}\)
=>\(\dfrac{OD}{OB}=\dfrac{OC}{OA}\)
Xét ΔODC và ΔOBA có
\(\dfrac{OD}{OB}=\dfrac{OC}{OA}\)
\(\widehat{O}\) chung
Do đó: ΔODC đồng dạng với ΔOBA
=>\(\dfrac{DC}{BA}=\dfrac{OC}{OA}\)
=>\(\dfrac{DC}{5}=\dfrac{6}{8}=\dfrac{3}{4}\)
=>\(DC=3\cdot\dfrac{5}{4}=\dfrac{15}{4}=3,75\left(cm\right)\)
O A B C D M N I
a) Xét \(\Delta\)AOD và \(\Delta\)COB có:
OA = OC ( gt ); ^AOD = ^COB ; OD = OB ( gt )
=> \(\Delta\)AOD = \(\Delta\)COB ( c. g. c) (1)
b) OA = OC ; OB = OD
=> AB = CD
(1) => ^OAD = ^OCD => ^DCB = ^BAD
Xét \(\Delta\)IAB và \(\Delta\)ICD có:
^ABI = ^CDI ( suy ra từ (1) ) ; AB = CD ; ^IAB = ^ICD ( vì ^DCB = ^BAD )
=> \(\Delta\)IAB = \(\Delta\)ICD ( g.c.g) (2)
Xét \(\Delta\)OIB và \(\Delta\)OID có:
IB = ID ( suy ra từ (2) ); OI chung ; OB = OD ( gt )
=> \(\Delta\)OIB = \(\Delta\)OID ( c.c.c)
=> ^IOB = ^IOD => OI là phân giác ^BOD
=> OI là phân giác ^xOy (3)
c ) \(\Delta\)AOM = \(\Delta\)COM ( c.c.c) => ^AOM = ^ COM => OM là phân giác ^AOC => OM là phân giác ^xOy (4)
\(\Delta\)BON = \(\Delta\)DON ( c.c.c) => ^BON= ^DON => ON là phân giác ^BOD => ON là phân giác ^xOy (5)
Từ (3); (4) ; (5) => I; M: N thẳng hàng.
sao AOD lại = COB ko cs trên giả thuyết mầ