Ai giúp mình từ bài 4 đến bài 8 được ko ? Cảm ơn nhiều nhé !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(2x+\frac{3}{4}\right)\frac{7}{9}=\frac{15}{8}\)
\(=2x+\frac{3}{4}\)\(=\frac{15}{8}:\frac{7}{9}\)
=\(2x+\frac{3}{4}=\frac{135}{56}\)
=2x=\(\frac{135}{56}-\frac{3}{4}\)
=2x=\(\frac{93}{56}\)
x=\(\frac{93}{56}:2\)
x=\(\frac{93}{112}\)
k nha
Bài 4:
a) áp dụng pi-ta-go ta có:\(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{15^2+20^2}=25\)
áp dụng HTL ta có: \(AB.AC=BC.AH\Rightarrow\dfrac{15.20}{25}=AH\Rightarrow AH=12\)
b) áp dụng HTL và ΔAHB ta có: \(AI.AB=AH^2\)
áp dụng HTL và ΔAHC ta có: \(AJ.AC=AH^2\)
\(\Rightarrow AI.AB=AJ.AC\)
III:
1) \(x-y=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\)
2) \(x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
4) \(a-2\sqrt{a}+1=\left(\sqrt{a}-1\right)^2\)
5) \(2x-\sqrt{x}-3=\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)\)
6) \(6a^2-5a\sqrt{b}-b=\left(a-\sqrt{b}\right)\left(6a+\sqrt{b}\right)\)
7) \(x-2\sqrt{x-1}-y^2=\left(\sqrt{x-1}-1\right)^2-y^2=\left(\sqrt{x-1}-1-y\right)\left(\sqrt{x-1}-1+y\right)\)
II:
2.8) ĐKXĐ: \(x\ge2\)
2.9: ĐKXĐ: \(\left[{}\begin{matrix}x< \dfrac{1}{2}\\\dfrac{1}{2}< x\le1\end{matrix}\right.\)
2.10: ĐKXĐ: \(x\ne0\)
2.11: ĐKXĐ: \(\left[{}\begin{matrix}x\le-5\\x\ge3\end{matrix}\right.\)
Từ 1 đến 154 có số số hạng là : ( 154 - 1 ) : 1 + 1 = 154 ( số hạng )
Tổng các số đó là : ( 154 + 1 ) x 154 : 2 = 11935
Vậy ta kết luận tổng các số từ 1 đến 154 không chia hết cho 2 nhưng chia hết cho 5.
Bài 2 :
a) 12,37 + 21,46 + 58,54 + 45,63
= ( 12,37 + 45,63 ) + ( 21,46 + 58,54 )
= 58 + 80
= 138
b) 20,08 + 40,41 + 30,2 + 50,59
= ( 20,08 + 30,2 ) + ( 40,41 + 50,59 )
= 50,2 + 100
= 150,2
\(C=1.2+2.3+3.4+...+x.\left(x-1\right)\)
\(\Rightarrow3C=1.2.3+2.3.3+3.4.3+...+x.\left(x-1\right).3\)
\(\Rightarrow3C=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+x.\left(x-1\right).\left[\left(x+1\right)-\left(x-2\right)\right]\)
\(\Rightarrow3C=\left(1.2.3-0.12\right)+\left(2.3.4-1.2.3\right)+\left(3.4.5-2.3.4\right)+...+\left[x.\left(x-1\right)\left(x+1\right)-x.\left(x-1\right)\left(x-2\right)\right]\)
\(\Rightarrow3C=-0.1.2+x.\left(x-1\right)\left(x+1\right)\)
\(\Rightarrow3C=x.\left(x-1\right)\left(x+1\right)\)
\(\Rightarrow C=\dfrac{x.\left(x-1\right)\left(x+1\right)}{3}\)
3C=1x2x3+2x3x3+3x4x3+...+Xx(X+1)=
=1x2x3+2x3x(4-1)+3x4x(5-2)+...+Xx(X+1)[(X+2)-(X-1)]=
=1x2x3-1x2x3+2x3x4-2x3x4+3x4x5-...-(X-1)xXx(X+1)+Xx(X+1)x(X+2)=
=Xx(X+1)(X+2)