Cho hai số tự nhiên thỏa mãn điều kiện \(\frac{1}{5}\)số thứ nhất cộng với \(\frac{1}{3}\)số thứ hai bằng 1. Tìm giá trị lớn nhất của tổng x+y?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Để số tự nhiên cần tìm lớn nhất có thể thì tổng các chữ số của nó bé nhất có thể. Vậy số tự nhiên cần tìm có 4 chữ số.
Gọi số cần tìm là abcd. Theo đầu bài ta có:
abcd + a + b + c + d = 2015
=> ( a * 1000 + a ) + ( b * 100 + b ) + ( c * 10 + c ) + ( d + d ) = 2015
=> a * 1001 + ( b * 101 + c * 11 + d * 2 ) = 2015
=> 2015 / 1001 = a ( dư b * 101 + c * 11 + d * 2 )
Mà 2015 / 1001 = 2 ( dư 13 )
=> a = 2
=> b * 101 + ( c * 11 + d * 2 ) = 13 => 13 / 101 = b ( dư c * 11 + d * 2 )
Mà 13 / 101 = 0 ( dư 13 )
=> b = 0
=> c * 11 + d * 2 = 13 => 13 / 11 = c ( dư d * 2 )
Mà 13 / 11 = 1 ( dư 2 )
=> c = 1
=> d * 2 = 2 => d = 1
Vậy số cần tìm là 2011.
Câu 1: \(P=\frac{3x^2-3x+3}{3\left(x^2+x+1\right)}=\frac{x^2+x+1+2\left(x^2-2x+1\right)}{3\left(x^2+x+1\right)}=\frac{x^2+x+1}{3\left(x^2+x+1\right)}+\frac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\)
= \(\frac{1}{3}+\frac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge\frac{1}{3}\), với mọi x. Dấu = xảy ra khi x- 1 =0 <=> x =1
Vậy Min P = 1/3 <=> x = 1
Tìm Max : \(P=\frac{3x^2+3x+3-2\left(x^2+2x+1\right)}{x^2+x+1}=3-\frac{2\left(x+1\right)^2}{x^2+x+1}\le3\),với mọi x,
Dấu = xảy ra <=> x +1 = 0 <=> x = - 1
Vậy max P = 3 <=> x = -1
Ta có (x+y)xy=x2+y2-xy
=> \(\frac{1}{x}+\frac{1}{y}=\frac{1}{x^2}+\frac{1}{y^2}-\frac{1}{xy}\)
<=>\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2+\frac{3}{4}\left(\frac{1}{x}-\frac{1}{y}\right)^2\ge\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^2\)
<=> \(0\le\frac{1}{x}+\frac{1}{y}\le4\)
mà \(A=\frac{1}{x^3+y^3}=\left(\frac{1}{x}+\frac{1}{y}\right)^2\le16\)
Vậy Max A =16 khi \(x=y=\frac{1}{2}\)