Cmr:
Đa thức f(x)= x^2011+x^2006+1 chia hết x^2+x+1
Giúp mình vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x=0, ta có x.f(x+1)=(x+2).f(0)=0
=>(0+2).f(0)=0
2.f(0)=0
=>f(0)=0
Với x=-2, ta có
-2.f(-2+1)=(-2+2).f(-2)
=>-2.f(-1)=0.f(-2)
=>-2.f(-1)=0
=>f(-1)=0
Vậy đa thức f(x) có ít nhất 2 nghiệm
Em mới học lớp 5 thôi ạ cho nên em chịu vậy nên em chỉ biết chúc chị học giỏi thôi
Ta có: \(Q\left(x\right)=x^2-6x+2019\)
\(=\left(x-3\right)^2+2010\)
Vì \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3\right)^2+2010\ge2010\forall x\)
Vậy đa thức Q(x) vô nghiệm.
\(Q\left(x\right)=\left(x^2-2x.3+3^2\right)+2019-9=0\)
\(Q\left(x\right)=\left(x+3\right)^2+2010=0\)
Vì \(Q\left(x\right)=\left(x+3\right)^2\ge0\forall x\)
\(Q\left(x\right)\ge2010>0\)
Vậy...
a) \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+4\right)\)
\(=x-2x^2+2x^2-x+4\)
\(=4\). Đây là hàm hằng nên không có nghiệm.
b) \(g\left(x\right)=x\left(x-5\right)-x\left(x+2\right)+7x\)
\(=x^2-5x-x^2-2x+7x\)
\(=0\). Đây là hàm hằng nên không có nghiệm.
c) \(H\left(x\right)=x\left(x-1\right)+1=x^2-x+1\)
Vì : \(H\left(x\right)=x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
Nen đa thức này vô nghiệm.
\(y=f\left(x\right)=4x^2-7.\)
\(y=1.\rightarrow f\left(1\right)=4.1^2-7=4-7=-3.\)
b) Thay x=-1 vào biểu thức \(B=\dfrac{2x^2+5x+4}{x^2-4x+3}\), ta được:
\(B=\dfrac{2\cdot\left(-1\right)^2+5\cdot\left(-1\right)+4}{\left(-1\right)^2-4\cdot\left(-1\right)+3}=\dfrac{2\cdot1-5+4}{1+4+3}=\dfrac{1}{8}\)
Vậy: Khi x=-1 thì \(B=\dfrac{1}{8}\)
Ta có:
|x| = \(\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{1}{3};x=-\dfrac{1}{3}\)
\(2x^3.5x^2+2x=\left(10x^5+2x\right):\left(2x-1\right)\)
\(=5x^4+\dfrac{5}{2}x^3+\dfrac{5}{4}x^2+\dfrac{5}{8}x+\dfrac{11}{16}\)(dư \(\dfrac{11}{16}\))